Marek Cygan, Fedor V. Fomin,
F.ukasz Kowalik, Daniel Lokshtanov,

Daniel Marx, Marcin Pilipczuk,
Michat Pilipczuk and Saket Saurabh

Parameterized Algorithms

May 30, 2016

Springer






Preface

The goal of this textbook is twofold. First, the book serves as an introduction
to the field of parameterized algorithms and complexity accessible to graduate
students and advanced undergraduate students. Second, it contains a clean
and coherent account of some of the most recent tools and techniques in the
area.

Parameterized algorithmics analyzes running time in finer detail than clas-
sical complexity theory: instead of expressing the running time as a function
of the input size only, dependence on one or more parameters of the input in-
stance is taken into account. While there were examples of nontrivial param-
eterized algorithms in the literature, such as Lenstra’s algorithm for integer
linear programming [319] or the disjoint paths algorithm of Robertson and
Seymour [402], it was only in the late 1980s that Downey and Fellows [149)],
building on joint work with Langston [180, [182] [183], proposed the system-
atic exploration of parameterized algorithms. Downey and Fellows laid the
foundations of a fruitful and deep theory, suitable for reasoning about the
complexity of parameterized algorithms. Their early work demonstrated that
fixed-parameter tractability is a ubiquitous phenomenon, naturally arising
in various contexts and applications. The parameterized view on algorithms
has led to a theory that is both mathematically beautiful and practically ap-
plicable. During the 30 years of its existence, the area has transformed into
a mainstream topic of theoretical computer science. A great number of new
results have been achieved, a wide array of techniques have been created,
and several open problems have been solved. At the time of writing, Google
Scholar gives more than 4000 papers containing the term “fixed-parameter
tractable”. While a full overview of the field in a single volume is no longer
possible, our goal is to present a selection of topics at the core of the field,
providing a key for understanding the developments in the area.
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Why This Book?

The idea of writing this book arose after we decided to organize a summer
school on parameterized algorithms and complexity in Bedlewo in August
2014. While planning the school, we realized that there is no textbook that
contains the material that we wanted to cover. The classical book of Downey
and Fellows [I53] summarizes the state of the field as of 1999. This book
was the starting point of a new wave of research in the area, which is ob-
viously not covered by this classical text. The area has been developing at
such a fast rate that even the two books that appeared in 2006, by Flum and
Grohe [I89] and Niedermeier [376], do not contain some of the new tools and
techniques that we feel need to be taught in a modern introductory course.
Examples include the lower bound techniques developed for kernelization in
2008, methods introduced for faster dynamic programming on tree decompo-
sitions (starting with Cut & Count in 2011), and the use of algebraic tools for
problems such as LONGEST PATH. The book of Flum and Grohe [189] focuses
to a large extent on complexity aspects of parameterized algorithmics from
the viewpoint of logic, while the material we wanted to cover in the school is
primarily algorithmic, viewing complexity as a tool for proving that certain
kinds of algorithms do not exist. The book of Niedermeier [376] gives a gen-
tle introduction to the field and some of the basic algorithmic techniques. In
2013, Downey and Fellows [I54] published the second edition of their clas-
sical text, capturing the development of the field from its nascent stages to
the most recent results. However, the book does not treat in detail many
of the algorithmic results we wanted to teach, such as how one can apply
important separators for EDGE MULTIWAY CUT and DIRECTED FEEDBACK
VERTEX SET, linear programming for ALmMosT 2-SAT, Cut & Count and
its deterministic counterparts to obtain faster algorithms on tree decompo-
sitions, algorithms based on representative families of matroids, kernels for
FEEDBACK VERTEX SET, and some of the reductions related to the use of
the Strong Exponential Time Hypothesis.

Our initial idea was to prepare a collection of lecture notes for the school,
but we realized soon that a coherent textbook covering all basic topics in
equal depth would better serve our purposes, as well as the purposes of those
colleagues who would teach a semester course in the future. We have or-
ganized the material into chapters according to techniques. Each chapter
discusses a certain algorithmic paradigm or lower bound methodology. This
means that the same algorithmic problem may be revisited in more than one
chapter, demonstrating how different techniques can be applied to it. Thanks
to the rapid growth of the field, it is now nearly impossible to cover every
relevant result in a single textbook. Therefore, we had to carefully select what
to present at the school and include in the book. Our goal was to include a
self-contained and teachable exposition of what we believe are the basic tech-
niques of the field, at the expense of giving a complete survey of the area. A
consequence of this is that we do not always present the strongest result for
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a particular problem. Nevertheless, we would like to point out that for many
problems the book actually contains the state of the art and brings the reader
to the frontiers of research. We made an effort to present full proofs for most
of the results, where this was feasible within the textbook format. We used
the opportunity of writing this textbook to revisit some of the results in the
literature and, using the benefit of hindsight, to present them in a modern
and didactic way.

At the end of each chapter we provide sections with exercises, hints to
exercises and bibliographical notes. Many of the exercises complement the
main narrative and cover important results which have to be omitted due
to space constraints. We use () and (&) to identify easy and challenging
exercises. Following the common practice for textbooks, we try to minimize
the occurrence of bibliographical and historical references in the main text
by moving them to bibliographic notes. These notes can also guide the reader
on to further reading.

Organization of the Book

The book is organized into three parts. The first seven chapters give the
basic toolbox of parameterized algorithms, which, in our opinion, every course
on the subject should cover. The second part, consisting of Chapters
covers more advanced algorithmic techniques that are featured prominently
in current research, such as important separators and algebraic methods.
The third part introduces the reader to the theory of lower bounds: the
intractability theory of parameterized complexity, lower bounds based on the
Exponential Time Hypothesis, and lower bounds on kernels. We adopt a
very pragmatic viewpoint in these chapters: our goal is to help the algorithm
designer by providing evidence that certain algorithms are unlikely to exist,
without entering into complexity theory in deeper detail. Every chapter is
accompanied by exercises, with hints for most of them. Bibliographic notes
point to the original publications, as well as to related work.

e Chapter [I] motivates parameterized algorithms and the notion of fixed-
parameter tractability with some simple examples. Formal definitions of
the main concepts are introduced.

e Kernelization is the first algorithmic paradigm for fixed-parameter tractabil-
ity that we discuss. Chapter [2] gives an introduction to this technique.

e Branching and bounded-depth search trees are the topic of Chapter
We discuss both basic examples and more advanced applications based on
linear programming relaxations, showing the fixed-parameter tractability
of, e.g., ODD CYCLE TRANSVERSAL and ALMOST 2-SAT.

e Iterative compression is a very useful technique for deletion problems.
Chapter M| introduces the technique through three examples, including
FEEDBACK VERTEX SET and ODD CYCLE TRANSVERSAL.
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e Chapter 5| discusses techniques for parameterized algorithms that use ran-
domization. The classic color coding technique for LONGEST PATH will
serve as an illustrative example.

e Chapter [6] presents a collection of techniques that belong to the basic tool-
box of parameterized algorithms: dynamic programming over subsets, in-
teger linear programming (ILP), and the use of well-quasi-ordering results
from graph minors theory.

e Chapter[7]introduces treewidth, which is a graph measure that has impor-
tant applications for parameterized algorithms. We discuss how to use dy-
namic programming and Courcelle’s theorem to solve problems on graphs
of bounded treewidth and how these algorithms are used more generally,
for example, in the context of bidimensionality for planar graphs.

o Chapter [ presents results that are based on a combinatorial bound on the
number of so-called “important separators”. We use this bound to show the
fixed-parameter tractability of problems such as EDGE MULTICUT and D1i-
RECTED FEEDBACK VERTEX SET. We also discuss randomized sampling
of important cuts.

o The kernels presented in Chapter [0] form a representative sample of more
advanced kernelization techniques. They demonstrate how the use of min-
max results from graph theory, the probabilistic method, and the proper-
ties of planar graphs can be exploited in kernelization.

e Two different types of algebraic techniques are discussed in Chapter
algorithms based on the inclusion—exclusion principle and on polynomial
identity testing. We use these techniques to present the fastest known
parameterized algorithms for STEINER TREE and LONGEST PATH.

e In Chapter we return to dynamic programming algorithms on graphs
of bounded treewidth. This chapter presents three methods (subset convo-
lution, Cut & Count, and a rank-based approach) for speeding up dynamic
programming on tree decompositions.

e The notion of matroids is a fundamental concept in combinatorics and
optimization. Recently, matroids have also been used for kernelization and
parameterized algorithms. Chapter [12] gives a gentle introduction to some
of these developments.

o Chapter T3] presents tools that allow us to give evidence that certain prob-
lems are not fixed-parameter tractable. The chapter introduces parame-
terized reductions and the W-hierarchy, and gives a sample of hardness
results for various concrete problems.

o Chapter[I4]uses the (Strong) Exponential Time Hypothesis to give running
time lower bounds that are more refined than the bounds in Chapter
In many cases, these stronger complexity assumptions allow us to obtain
lower bounds essentially matching the best known algorithms.

e Chapter[15]|gives the tools for showing lower bounds for kernelization algo-
rithms. We use methods of composition and polynomial-parameter trans-
formations to show that certain problem, such as LONGEST PATH, do not
admit polynomial kernels.
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Fig. 0.1: Dependencies between the chapters

As in any textbook we will assume that the reader is familiar with the
content of one chapter before moving to the next. On the other hand, for
most chapters it is not necessary for the reader to have read all preceeding
chapters. Thus the book does not have to be read linearly from beginning to
end. Figure depicts the dependencies between the different chapters. For
example, the chapters on Iterative Compression and Bounded Search Trees
are considered necessary prerequisites to understand the chapter on finding
cuts and separators.

Using the Book for Teaching

A course on parameterized algorithms should cover most of the material in
Part I, except perhaps the more advanced sections marked with an asterisk.
In Part II, the instructor may choose which chapters and which sections to
teach based on his or her preferences. Our suggestion for a coherent set of
topics from Part IT is the following:
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All of Chapter [§] as it is relatively easily teachable. The sections of this
chapter are based on each other and hence should be taught in this order,
except that perhaps Section [B.4] and Sections [B.5H8.6] are interchangeable.
Chapter [9] contains four independent sections. One could select Section 0.1
(FEEDBACK VERTEX SET) and Section [9.3|(CONNECTED VERTEX COVER
on planar graphs) in a first course.

From Chapter we suggest presenting Section (inclusion—exclusion
principle), and Section (LONGEST PATH in time 2F - n©M).

From Chapter we recommend teaching Sections[11.2.1] and [F11.2.2] as
they are most illustrative for the recent developments on algorithms on
tree decompositions.

From Chapter [I2] we recommend teaching Section If the students are
unfamiliar with matroids, Section [I2.1] provides a brief introduction to the
topic.

Part III gives a self-contained exposition of the lower bound machinery. In

this part, the sections not marked with an asterisk give a set of topics that
can form the complexity part of a course on parameterized algorithms. In
some cases, we have presented multiple reductions showcasing the same kind
of lower bounds; the instructor can choose from these examples according to
the needs of the course. Section [14.4.1] contains some more involved proofs,
but one can give a coherent overview of this section even while omitting most
of the proofs.

Bergen, Budapest, Chennai, Warsaw

June 2015

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov,
Daniel Marx, Marcin Pilipczuk, Michat Pilipczuk and Saket Saurabh
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Chapter 1
Introduction

A squirrel, a platypus and a hamster walk into a bar...

Imagine that you are an exceptionally tech-savvy security guard of a bar
in an undisclosed small town on the west coast of Norway. Every Friday,
half of the inhabitants of the town go out, and the bar you work at is well
known for its nightly brawls. This of course results in an excessive amount
of work for you; having to throw out intoxicated guests is tedious and rather
unpleasant labor. Thus you decide to take preemptive measures. As the town
is small, you know everyone in it, and you also know who will be likely to
fight with whom if they are admitted to the bar. So you wish to plan ahead,
and only admit people if they will not be fighting with anyone else at the
bar. At the same time, the management wants to maximize profit and is not
too happy if you on any given night reject more than k people at the door.
Thus, you are left with the following optimization problem. You have a list
of all of the n people who will come to the bar, and for each pair of people
a prediction of whether or not they will fight if they both are admitted. You
need to figure out whether it is possible to admit everyone except for at most
k troublemakers, such that no fight breaks out among the admitted guests.
Let us call this problem the BAR FIGHT PREVENTION problem. Figure
shows an instance of the problem and a solution for k¥ = 3. One can easily
check that this instance has no solution with k£ = 2.
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Fig. 1.1: An instance of the BAR FIGHT PREVENTION problem with a solution
for k = 3. An edge between two guests means that they will fight if both are
admitted

Efficient algorithms for BAR FIGHT PREVENTION

Unfortunately, BAR FIGHT PREVENTION is a classic NP-complete problem
(the reader might have heard of it under the name VERTEX COVER), and so
the best way to solve the problem is by trying all possibilities, right? If there
aren = 1000 people planning to come to the bar, then you can quickly code up
the brute-force solution that tries each of the 21999 ~ 1.07-103°! possibilities.
Sadly, this program won’t terminate before the guests arrive, probably not
even before the universe implodes on itself. Luckily, the number k of guests
that should be rejected is not that large, k¥ < 10. So now the program only
needs to try (1(1)80) ~ 2.63 - 10?3 possibilities. This is much better, but still
quite infeasible to do in one day, even with access to supercomputers.

So should you give up at this point, and resign yourself to throwing guests
out after the fights break out? Well, at least you can easily identify some
peaceful souls to accept, and some troublemakers you need to refuse at the
door for sure. Anyone who does not have a potential conflict with anyone else
can be safely moved to the list of people to accept. On the other hand, if some
guy will fight with at least £ 4+ 1 other guests you have to reject him — as
otherwise you will have to reject all of his £+ 1 opponents, thereby upsetting
the management. If you identify such a troublemaker (in the example of
Fig. Daniel is such a troublemaker), you immediately strike him from
the guest list, and decrease the number k of people you can reject by oneEI

If there is no one left to strike out in this manner, then we know that each
guest will fight with at most k other guests. Thus, rejecting any single guest
will resolve at most k potential conflicts. And so, if there are more than k2

1 The astute reader may observe that in Fig. after eliminating Daniel and setting k = 2,
Fedor still has three opponents, making it possible to eliminate him and set k = 1. Then
Bob, who is in conflict with Alice and Christos, can be eliminated, resolving all conflicts.



1 Introduction 5

potential conflicts, you know that there is no way to ensure a peaceful night
at the bar by rejecting only k guests at the door. As each guest who has not
yet been moved to the accept or reject list participates in at least one and at
most k potential conflicts, and there are at most k2 potential conflicts, there
are at most 2k? guests whose fate is yet undecided. Trying all possibilities

for these will need approximately (2’;2) < (21000) ~ 2.24 - 106 checks, which
is feasible to do in less than a day on a modern supercomputer, but quite
hopeless on a laptop.

If it is safe to admit anyone who does not participate in any potential
conflict, what about those who participate in exactly one? If Alice has a
conflict with Bob, but with no one else, then it is always a good idea to admit
Alice. Indeed, you cannot accept both Alice and Bob, and admitting Alice
cannot be any worse than admitting Bob: if Bob is in the bar, then Alice has
to be rejected for sure and potentially some other guests as well. Therefore,
it is safe to accept Alice, reject Bob, and decrease k by one in this case. This
way, you can always decide the fate of any guest with only one potential
conflict. At this point, each guest you have not yet moved to the accept or
reject list participates in at least two and at most k potential conflicts. It is
easy to see that with this assumption, having at most k? unresolved conflicts
implies that there are only at most k% guests whose fate is yet undecided,
instead of the previous upper bound of 2k2. Trying all possibilities for which

of those to refuse at the door requires (’f) < (11000) ~ 1.73 - 10'3 checks.
With a clever implementation, this takes less than half a day on a laptop,
so if you start the program in the morning you’ll know who to refuse at the
door by the time the bar opens. Therefore, instead of using brute force to
go through an enormous search space, we used simple observations to reduce
the search space to a manageable size. This algorithmic technique, using
reduction rules to decrease the size of the instance, is called kernelization,
and will be the subject of Chapter [2| (with some more advanced examples
appearing in Chapter [9).

It turns out that a simple observation yields an even faster algorithm for
BAR FIGHT PREVENTION. The crucial point is that every conflict has to
be resolved, and that the only way to resolve a conflict is to refuse at least
one of the two participants. Thus, as long as there is at least one unresolved
conflict, say between Alice and Bob, we proceed as follows. Try moving Alice
to the reject list and run the algorithm recursively to check whether the
remaining conflicts can be resolved by rejecting at most k& — 1 guests. If this
succeeds you already have a solution. If it fails, then move Alice back onto the
undecided list, move Bob to the reject list and run the algorithm recursively
to check whether the remaining conflicts can be resolved by rejecting at most
k — 1 additional guests (see Fig. . If this recursive call also fails to find
a solution, then you can be sure that there is no way to avoid a fight by
rejecting at most k guests.

What is the running time of this algorithm? All it does is to check whether
all conflicts have been resolved, and if not, it makes two recursive calls. In
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Alice vs. Bob

. Christos
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Fig. 1.2: The search tree for BAR FIGHT PREVENTION with k£ = 3. In the
leaves marked with “Fail”, the parameter k is decreased to zero, but there
are still unresolved conflicts. The rightmost branch of the search tree finds a
solution: after rejecting Bob, Daniel, and Fedor, no more conflicts remain

both of the recursive calls the value of k£ decreases by 1, and when k reaches
0 all the algorithm has to do is to check whether there are any unresolved
conflicts left. Hence there is a total of 2¥ recursive calls, and it is easy to
implement each recursive call to run in linear time O(n + m), where m is
the total number of possible conflicts. Let us recall that we already achieved
the situation where every undecided guest has at most k conflicts with other
guests, so m < nk/2. Hence the total number of operations is approximately
2k .p -k < 2'9.10,000 = 10,240,000, which takes a fraction of a second
on today’s laptops. Or cell phones, for that matter. You can now make the
BAR FIGHT PREVENTION app, and celebrate with a root beer. This simple
algorithm is an example of another algorithmic paradigm: the technique of
bounded search trees. In Chapter [3] we will see several applications of this
technique to various problems.

The algorithm above runs in time O(2¥ - k - n), while the naive algorithm
that tries every possible subset of k people to reject runs in time O(nk).
Observe that if & is considered to be a constant (say & = 10), then both
algorithms run in polynomial time. However, as we have seen, there is a quite
dramatic difference between the running times of the two algorithms. The
reason is that even though the naive algorithm is a polynomial-time algorithm
for every fixed value of k, the exponent of the polynomial depends on k.
On the other hand, the final algorithm we designed runs in linear time for
every fixed value of k! This difference is what parameterized algorithms and
complexity is all about. In the O(2¥ - k- n)-time algorithm, the combinatorial
explosion is restricted to the parameter k: the running time is exponential
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in k&, but depends only polynomially (actually, linearly) on n. Our goal is to
find algorithms of this form.

Algorithms with running time f(k)-n¢, for a constant ¢ independent of
both n and k, are called fized-parameter algorithms, or FPT algorithms.
Typically the goal in parameterized algorithmics is to design FPT al-
gorithms; trying to make both the f(k) factor and the constant ¢ in
the bound on the running time as small as possible. FPT algorithms
can be put in contrast with less efficient XP algorithms (for slice-wise
polynomial), where the running time is of the form f(k)-n9®*), for some
functions f,g. There is a tremendous difference in the running times

f(k) -n9® and f(k)-ne.

In parameterized algorithmics, & is simply a relevant secondary mea-
surement that encapsulates some aspect of the input instance, be it the
size of the solution sought after, or a number describing how “struc-
tured” the input instance is.

A negative example: vertex coloring

Not every choice for what k measures leads to FPT algorithms. Let us have
a look at an example where it does not. Suppose the management of the
hypothetical bar you work at doesn’t want to refuse anyone at the door, but
still doesn’t want any fights. To achieve this, they buy k£ —1 more bars across
the street, and come up with the following brilliant plan. Every night they
will compile a list of the guests coming, and a list of potential conflicts. Then
you are to split the guest list into k groups, such that no two guests with
a potential conflict between them end up in the same group. Then each of
the groups can be sent to one bar, keeping everyone happy. For example,
in Fig. we may put Alice and Christos in the first bar, Bob, Erik, and
Gerhard in the second bar, and Daniel and Fedor in the third bar.

We model this problem as a graph problem, representing each person as
a vertex, and each conflict as an edge between two vertices. A partition of
the guest list into k& groups can be represented by a function that assigns
to each vertex an integer between 1 and k. The objective is to find such a
function that, for every edge, assigns different numbers to its two endpoints.
A function that satisfies these constraints is called a proper k-coloring of the
graph. Not every graph has a proper k-coloring. For example, if there are
k + 1 vertices with an edge between every pair of them, then each of these
vertices needs to be assigned a unique integer. Hence such a graph does not
have a proper k-coloring. This gives rise to a computational problem, called
VERTEX COLORING. Here we are given as input a graph G and an integer k,
and we need to decide whether G has a proper k-coloring.
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It is well known that VERTEX COLORING is NP-complete, so we do not
hope for a polynomial-time algorithm that works in all cases. However, it is
fair to assume that the management does not want to own more than k =5
bars on the same street, so we will gladly settle for a O(2F-n¢)-time algorithm
for some constant ¢, mimicking the success we had with our first problem.
Unfortunately, deciding whether a graph G has a proper 5-coloring is NP-
complete, so any f(k) - n®time algorithm for VERTEX COLORING for any
function f and constant ¢ would imply that P = NP ; indeed, suppose such
an algorithm existed. Then, given a graph G, we can decide whether G has a
proper 5-coloring in time f(5)-n¢ = O(n°). But then we have a polynomial-
time algorithm for an NP-hard problem, implying P = NP . Observe that
even an XP algorithm with running time f(k)-n9* for any functions f and
g would imply that P = NP by an identical argument.

A hard parameterized problem: finding cliques

The example of VERTEX COLORING illustrates that parameterized algorithms
are not all-powerful: there are parameterized problems that do not seem to
admit FPT algorithms. But very importantly, in this specific example, we
could explain very precisely why we are not able to design efficient algorithms,
even when the number of bars is small. From the perspective of an algorithm
designer such insight is very useful; she can now stop wasting time trying to
design efficient algorithms based only on the fact that the number of bars is
small, and start searching for other ways to attack the problem instances. If
we are trying to make a polynomial-time algorithm for a problem and failing,
it is quite likely that this is because the problem is NP-hard. Is the theory
of NP-hardness the right tool also for giving negative evidence for fixed-
parameter tractability? In particular, if we are trying to make an f(k) - n°-
time algorithm and fail to do so, is it because the problem is NP-hard for
some fixed constant value of k, say k = 1007 Let us look at another example
problem.

Now that you have a program that helps you decide who to refuse at the
door and who to admit, you are faced with a different problem. The people in
the town you live in have friends who might get upset if their friend is refused
at the door. You are quite skilled at martial arts, and you can handle at most
k — 1 angry guys coming at you, but probably not k. What you are most
worried about are groups of at least k people where everyone in the group is
friends with everyone else. These groups tend to have an “all for one and one
for all” mentality — if one of them gets mad at you, they all do. Small as the
town is, you know exactly who is friends with whom, and you want to figure
out whether there is a group of at least k& people where everyone is friends
with everyone else. You model this as a graph problem where every person
is a vertex and two vertices are connected by an edge if the corresponding
persons are friends. What you are looking for is a clique on k vertices, that
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is, a set of k vertices with an edge between every pair of them. This problem
is known as the CLIQUE problem. For example, if we interpret now the edges
of Fig. [I.I] as showing friendships between people, then Bob, Christos, and
Daniel form a clique of size 3.

There is a simple O(n*)-time algorithm to check whether a clique on at

least k vertices exists; for each of the (}) = (9(2—;) subsets of vertices of
size k, we check in time O(k?) whether every pair of vertices in the subset
is adjacent. Unfortunately, this XP algorithm is quite hopeless to run for
n = 1000 and k£ = 10. Can we design an FPT algorithm for this problem?
So far, no one has managed to find one. Could it be that this is because
finding a k-clique is NP-hard for some fixed value of k7 Suppose the problem
was NP-hard for £ = 100. We just gave an algorithm for finding a clique of
size 100 in time O(n!%), which is polynomial time. We would then have a
polynomial-time algorithm for an NP-hard problem, implying that P = NP.
So we cannot expect to be able to use NP-hardness in this way in order to
rule out an FPT algorithm for CLIQUE. More generally, it seems very difficult
to use NP-hardness in order to explain why a problem that does have an XP
algorithm does not admit an FPT algorithm.

Since NP-hardness is insufficient to differentiate between problems with
f(k) - n9®)_time algorithms and problems with f(k) - n°~time algorithms, we
resort to stronger complexity theoretical assumptions. The theory of W[1]-
hardness (see Chapter allows us to prove (under certain complexity as-
sumptions) that even though a problem is polynomial-time solvable for every
fixed k, the parameter k has to appear in the exponent of n in the running
time, that is, the problem is not FPT. This theory has been quite successful
for identifying which parameterized problems are FPT and which are unlikely
to be. Besides this qualitative classification of FPT versus W[1]-hard, more
recent developments give us also (an often surprisingly tight) quantitative
understanding of the time needed to solve a parameterized problem. Under
reasonable assumptions about the hardness of CNF-SAT (see Chapter ,
it is possible to show that there is no f(k) - n¢ or even a f(k) - n°*)-time
algorithm for finding a clique on k vertices. Thus, up to constant factors
in the exponent, the naive O(n*)-time algorithm is optimal! Over the past
few years, it has become a rule, rather than an exception, that whenever
we are unable to significantly improve the running time of a parameterized
algorithm, we are able to show that the existing algorithms are asymptoti-
cally optimal, under reasonable assumptions. For example, under the same
assumptions that we used to rule out an f(k) - n°*)-time algorithm for solv-
ing CLIQUE, we can also rule out a 2°F) . n@(_time algorithm for the BAR
FI1GHT PREVENTION problem from the beginning of this chapter.

Any algorithmic theory is incomplete without an accompanying com-
plexity theory that establishes intractability of certain problems. There
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Problem Good news Bad news

Bar FiguT PrREVENTION O(2F - k- n)-time algorithm ~ NP-hard
(probably not in P)

CLIQUE with A 024 - A% . n)-time algorithm NP-hard
(probably not in P)

CLIQUE with k n@®)_time algorithm W(1]-hard
(probably not FPT)

VERTEX COLORING NP-hard for k =3
(probably not XP)

Fig. 1.3: Overview of the problems in this chapter

is such a complexity theory providing lower bounds on the running time
required to solve parameterized problems.

Finding cliques — with a different parameter

OK, so there probably is no algorithm for solving CLIQUE with running time
f (k) -.n°*) But what about those scary groups of people that might come for
you if you refuse the wrong person at the door? They do not care at all about
the computational hardness of CLIQUE, and neither do their fists. What can
you do? Well, in Norway most people do not have too many friends. In fact,
it is quite unheard of that someone has more than A = 20 friends. That
means that we are trying to find a k-clique in a graph of maximum degree
A. This can be done quite efficiently: if we guess one vertex v in the clique,
then the remaining vertices in the clique must be among the A neighbors of
v. Thus we can try all of the 22 subsets of the neighbors of v, and return
the largest clique that we found. The total running time of this algorithm
is O(24 - A% . n), which is quite feasible for A = 20. Again it is possible to
use complexity theoretic assumptions on the hardness of CNF-SAT to show
that this algorithm is asymptotically optimal, up to multiplicative constants
in the exponent.

What the algorithm above shows is that the CLIQUE problem is FPT when
the parameter is the maximum degree A of the input graph. At the same time
CLIQUE is probably not FPT when the parameter is the solution size k. Thus,
the classification of the problem into “tractable” or “intractable” crucially
depends on the choice of parameter. This makes a lot of sense; the more we
know about our input instances, the more we can exploit algorithmically!
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The art of parameterization

For typical optimization problems, one can immediately find a relevant pa-
rameter: the size of the solution we are looking for. In some cases, however,
it is not completely obvious what we mean by the size of the solution. For
example, consider the variant of BAR FIGHT PREVENTION where we want
to reject at most k£ guests such that the number of conflicts is reduced to at
most ¢ (as we believe that the bouncers at the bar can handle ¢ conflicts,
but not more). Then we can parameterize either by k or by ¢. We may even
parameterize by both: then the goal is to find an FPT algorithm with running
time f(k, ) - n® for some computable function f depending only on %k and /.
Thus the theory of parameterization and FPT algorithms can be extended to
considering a set of parameters at the same time. Formally, however, one can
express parameterization by k and ¢ simply by defining the value k + ¢ to be
the parameter: an f(k,¢) - n® algorithm exists if and only if an f(k + ¢) - n©
algorithm exists.

The parameters k and /¢ in the extended BAR FIGHT PREVENTION exam-
ple of the previous paragraph are related to the objective of the problem: they
are parameters explicitly given in the input, defining the properties of the so-
lution we are looking for. We get more examples of this type of parameter if
we define variants of BAR FIGHT PREVENTION where we need to reject at
most k guests such that, say, the number of conflicts decreases by p, or such
that each accepted guest has conflicts with at most d other accepted guests,
or such that the average number of conflicts per guest is at most a. Then
the parameters p, d, and a are again explicitly given in the input, telling us
what kind of solution we need to find. The parameter A (maximum degree
of the graph) in the CLIQUE example is a parameter of a very different type:
it is not given explicitly in the input, but it is a measure of some property of
the input instance. We defined and explored this particular measure because
we believed that it is typically small in the input instances we care about:
this parameter expresses some structural property of typical instances. We
can identify and investigate any number of such parameters. For example,
in problems involving graphs, we may parameterize by any structural pa-
rameter of the graph at hand. Say, if we believe that the problem is easy on
planar graphs and the instances are “almost planar”, then we may explore the
parameterization by the genus of the graph (roughly speaking, a graph has
genus g if it can be drawn without edge crossings on a sphere with g holes in
it). A large part of Chapter [7] (and also Chapter is devoted to parame-
terization by treewidth, which is a very important parameter measuring the
“tree-likeness” of the graph. For problems involving satisfiability of Boolean
formulas, we can have such parameters as the number of variables, or clauses,
or the number of clauses that need to be satisfied, or that are allowed not
to be satisfied. For problems involving a set of strings, one can parameter-
ize by the maximum length of the strings, by the size of the alphabet, by
the maximum number of distinct symbols appearing in each string, etc. In
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a problem involving a set of geometric objects (say, points in space, disks,
or polygons), one may parameterize by the maximum number of vertices of
each polygon or the dimension of the space where the problem is defined. For
each problem, with a bit of creativity, one can come up with a large number
of (combinations of) parameters worth studying.

For the same problem there can be multiple choices of parameters. Se-
lecting the right parameter(s) for a particular problem is an art.

Parameterized complexity allows us to study how different parameters in-
fluence the complexity of the problem. A successful parameterization of a
problem needs to satisfy two properties. First, we should have some rea-
son to believe that the selected parameter (or combination of parameters)
is typically small on input instances in some application. Second, we need
efficient algorithms where the combinatorial explosion is restricted to the
parameter(s), that is, we want the problem to be FPT with this parameter-
ization. Finding good parameterizations is an art on its own and one may
spend quite some time on analyzing different parameterizations of the same
problem. However, in this book we focus more on explaining algorithmic tech-
niques via carefully chosen illustrative examples, rather than discussing every
possible aspect of a particular problem. Therefore, even though different pa-
rameters and parameterizations will appear throughout the book, we will not
try to give a complete account of all known parameterizations and results for
any concrete problem.

1.1 Formal definitions

We finish this chapter by leaving the realm of pub jokes and moving to more
serious matters. Before we start explaining the techniques for designing pa-
rameterized algorithms, we need to introduce formal foundations of param-
eterized complexity. That is, we need to have rigorous definitions of what a
parameterized problem is, and what it means that a parameterized problem
belongs to a specific complexity class.

Definition 1.1. A parameterized problem is a language L C X* x N, where
Y is a fixed, finite alphabet. For an instance (z,k) € X* x N, k is called the
parameter.

For example, an instance of CLIQUE parameterized by the solution size is
a pair (G, k), where we expect G to be an undirected graph encoded as a
string over X, and k is a positive integer. That is, a pair (G, k) belongs to the
CLIQUE parameterized language if and only if the string G correctly encodes
an undirected graph, which we will also denote by G, and moreover the graph
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G contains a clique on k vertices. Similarly, an instance of the CNF-SAT
problem (satisfiability of propositional formulas in CNF'), parameterized by
the number of variables, is a pair (¢, n), where we expect ¢ to be the input
formula encoded as a string over X' and n to be the number of variables of
¢. That is, a pair (p,n) belongs to the CNF-SAT parameterized language
if and only if the string ¢ correctly encodes a CNF formula with n variables,
and the formula is satisfiable.

We define the size of an instance (x,k) of a parameterized problem as
|z| + k. One interpretation of this convention is that, when given to the
algorithm on the input, the parameter k is encoded in unary.

Definition 1.2. A parameterized problem L C X* x N is called fized-
parameter tractable (FPT) if there exists an algorithm A (called a fized-
parameter algorithm), a computable function f: N — N, and a constant
¢ such that, given (z,k) € X* x N, the algorithm A correctly decides
whether (z,k) € L in time bounded by f(k) - |(x, k)|°. The complexity
class containing all fixed-parameter tractable problems is called FPT.

Before we go further, let us make some remarks about the function f in
this definition. Observe that we assume f to be computable, as otherwise we
would quickly run into trouble when developing complexity theory for fixed-
parameter tractability. For technical reasons, it will be convenient to assume,
from now on, that f is also nondecreasing. Observe that this assumption
has no influence on the definition of fixed-parameter tractability as stated in
Definition [1.2} since for every computable function f: N — N there exists a
computable nondecreasing function f that is never smaller than f: we can
simply take f(k) = max;—o1,. x f(i). Also, for standard algorithmic results
it is always the case that the bound on the running time is a nondecreasing
function of the complexity measure, so this assumption is indeed satisfied in
practice. However, the assumption about f being nondecreasing is formally
needed in various situations, for example when performing reductions.

We now define the complexity class XP.

Definition 1.3. A parameterized problem L C X* x N is called slice-wise
polynomial (XP) if there exists an algorithm A and two computable functions
fy9: N — N such that, given (x,k) € 2* x N, the algorithm A correctly de-
cides whether (z, k) € L in time bounded by f(k)-|(x, k)[?**). The complexity
class containing all slice-wise polynomial problems is called XP.

Again, we shall assume that the functions f, g in this definition are nonde-
creasing.

The definition of a parameterized problem, as well as the definitions of
the classes FPT and XP, can easily be generalized to encompass multiple
parameters. In this setting we simply allow k to be not just one nonnegative
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integer, but a vector of d nonnegative integers, for some fixed constant d.
Then the functions f and g in the definitions of the complexity classes FPT
and XP can depend on all these parameters.

Just as “polynomial time” and “polynomial-time algorithm” usually refer
to time polynomial in the input size, the terms “FPT time” and “FPT algo-
rithms” refer to time f(k) times a polynomial in the input size. Here f is a
computable function of k£ and the degree of the polynomial is independent of
both n and k. The same holds for “XP time” and “XP algorithms”, except
that here the degree of the polynomial is allowed to depend on the parameter
k, as long as it is upper bounded by g(k) for some computable function g.

Observe that, given some parameterized problem L, the algorithm de-
signer has essentially two different optimization goals when designing FPT
algorithms for L. Since the running time has to be of the form f(k) - n¢, one
can:

e optimize the parametric dependence of the running time, i.e., try to design
an algorithm where function f grows as slowly as possible; or

e optimize the polynomial factor in the running time, i.e., try to design an
algorithm where constant c is as small as possible.

Both these goals are equally important, from both a theoretical and a practi-
cal point of view. Unfortunately, keeping track of and optimizing both factors
of the running time can be a very difficult task. For this reason, most research
on parameterized algorithms concentrates on optimizing one of the factors,
and putting more focus on each of them constitutes one of the two dominant
trends in parameterized complexity. Sometimes, when we are not interested in
the exact value of the polynomial factor, we use the O*-notation, which sup-
presses factors polynomial in the input size. More precisely, a running time
O*(f(k)) means that the running time is upper bounded by f(k) - n®®,
where n is the input size.

The theory of parameterized complexity has been pioneered by Downey
and Fellows over the last two decades [148, [149] 150, 151} [153]. The main
achievement of their work is a comprehensive complexity theory for param-
eterized problems, with appropriate notions of reduction and completeness.
The primary goal is to understand the qualitative difference between fixed-
parameter tractable problems, and problems that do not admit such effi-
cient algorithms. The theory contains a rich “positive” toolkit of techniques
for developing efficient parameterized algorithms, as well as a correspond-
ing “negative” toolkit that supports a theory of parameterized intractability.
This textbook is mostly devoted to a presentation of the positive toolkit: in
Chapters [2] through [I2] we present various algorithmic techniques for design-
ing fixed-parameter tractable algorithms. As we have argued, the process of
algorithm design has to use both toolkits in order to be able to conclude that
certain research directions are pointless. Therefore, in Part [[TI] we give an
introduction to lower bounds for parameterized problems.
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Chapter 2
Kernelization

Kernelization 1is a systematic approach to study
polynomial-time preprocessing algorithms. It is an
important tool in the design of parameterized algo-
rithms. In this chapter we explain basic kernelization
techniques such as crown decomposition, the expan-
sion lemma, the sunflower lemma, and linear pro-
gramming. We illustrate these techniques by obtain-
ing kernels for VERTEX COVER, FEEDBACK ARC SET
IN TOURNAMENTS, EDGE CLIQUE COVER, MAXIMUM
SATISFIABILITY, and d-HiTTING SET.

Preprocessing (data reduction or kernelization) is used universally in al-
most every practical computer implementation that aims to deal with an NP-
hard problem. The goal of a preprocessing subroutine is to solve efficiently
the “easy parts” of a problem instance and reduce it (shrink it) to its com-
putationally difficult “core” structure (the problem kernel of the instance). In
other words, the idea of this method is to reduce (but not necessarily solve)
the given problem instance to an equivalent “smaller sized” instance in time
polynomial in the input size. A slower exact algorithm can then be run on
this smaller instance.

How can we measure the effectiveness of such a preprocessing subrou-
tine? Suppose we define a useful preprocessing algorithm as one that runs
in polynomial time and replaces an instance I with an equivalent instance
that is at least one bit smaller. Then the existence of such an algorithm for
an NP-hard problem would imply P= NP, making it unlikely that such an
algorithm can be found. For a long time, there was no other suggestion for
a formal definition of useful preprocessing, leaving the mathematical analy-
sis of polynomial-time preprocessing algorithms largely neglected. But in the
language of parameterized complexity, we can formulate a definition of use-
ful preprocessing by demanding that large instances with a small parameter
should be shrunk, while instances that are small compared to their parameter

17
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do not have to be processed further. These ideas open up the “lost continent”
of polynomial-time algorithms called kernelization.

In this chapter we illustrate some commonly used techniques to design
kernelization algorithms through concrete examples. The next section, Sec-
tion [2:1] provides formal definitions. In Section 2.2 we give kernelization algo-
rithms based on so-called natural reduction rules. Section 2.3 introduces the
concepts of crown decomposition and the expansion lemma, and illustrates
it on MAXIMUM SATISFIABILITY. Section studies tools based on linear
programming and gives a kernel for VERTEX COVER. Finally, we study the
sunflower lemma in Section [2.6] and use it to obtain a polynomial kernel for
d-HITTING SET.

2.1 Formal definitions

We now turn to the formal definition that captures the notion of kerneliza-
tion. A data reduction rule, or simply, reduction rule, for a parameterized
problem @ is a function ¢: X* x N — X* x N that maps an instance (I, k)
of @ to an equivalent instance (I',k’) of @ such that ¢ is computable in
time polynomial in || and k. We say that two instances of Q are equivalent
if (I,k) € Q if and only if (I, k") € Q; this property of the reduction rule ¢,
that it translates an instance to an equivalent one, is sometimes referred to
as the safeness or soundness of the reduction rule. In this book, we stick to
the phrases: a rule is safe and the safeness of a reduction rule.

The general idea is to design a preprocessing algorithm that consecutively
applies various data reduction rules in order to shrink the instance size as
much as possible. Thus, such a preprocessing algorithm takes as input an
instance (I,k) € X* x N of @), works in polynomial time, and returns an
equivalent instance (I',k’) of Q. In order to formalize the requirement that
the output instance has to be small, we apply the main principle of Parame-
terized Complexity: The complexity is measured in terms of the parameter.
Consequently, the output size of a preprocessing algorithm A is a function
sizes: N — N U {oo} defined as follows:

sizea(k) = sup{|I'| + k' : (I')K') = A(L,k), I € Z*}.

In other words, we look at all possible instances of @ with a fixed parameter k,
and measure the supremum of the sizes of the output of A on these instances.
Note that this supremum may be infinite; this happens when we do not have
any bound on the size of A(I,k) in terms of the input parameter k only.
Kernelization algorithms are exactly these preprocessing algorithms whose
output size is finite and bounded by a computable function of the parameter.

Definition 2.1 (Kernelization, kernel). A kernelization algorithm, or
simply a kernel, for a parameterized problem @ is an algorithm A that, given
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an instance (I, k) of @, works in polynomial time and returns an equivalent
instance (I’, k") of Q. Moreover, we require that size4(k) < g(k) for some
computable function g: N — N.

The size requirement in this definition can be reformulated as follows:
There exists a computable function g(-) such that whenever (I’,k’) is the
output for an instance (I, k), then it holds that |I'| + k¥’ < g(k). If the upper
bound g¢(-) is a polynomial (linear) function of the parameter, then we say
that @ admits a polynomial (linear) kernel. We often abuse the notation and
call the output of a kernelization algorithm the “reduced” equivalent instance,
also a kernel.

In the course of this chapter, we will often encounter a situation when
in some boundary cases we are able to completely resolve the considered
problem instance, that is, correctly decide whether it is a yes-instance or a
no-instance. Hence, for clarity, we allow the reductions (and, consequently,
the kernelization algorithm) to return a yes/no answer instead of a reduced
instance. Formally, to fit into the introduced definition of a kernel, in such
cases the kernelization algorithm should instead return a constant-size trivial
yes-instance or no-instance. Note that such instances exist for every param-
eterized language except for the empty one and its complement, and can be
therefore hardcoded into the kernelization algorithm.

Recall that, given an instance (I, k) of @, the size of the kernel is defined
as the number of bits needed to encode the reduced equivalent instance I’
plus the parameter value k’. However, when dealing with problems on graphs,
hypergraphs, or formulas, often we would like to emphasize other aspects of
output instances. For example, for a graph problem @, we could say that @
admits a kernel with O(k3) vertices and O(k®) edges to emphasize the upper
bound on the number of vertices and edges in the output instances. Similarly,
for a problem defined on formulas, we could say that the problem admits a
kernel with O(k) variables.

It is important to mention here that the early definitions of kernelization
required that &' < k. On an intuitive level this makes sense, as the parame-
ter k measures the complexity of the problem — thus the larger the k, the
harder the problem. This requirement was subsequently relaxed, notably in
the context of lower bounds. An advantage of the more liberal notion of ker-
nelization is that it is robust with respect to polynomial transformations of
the kernel. However, it limits the connection with practical preprocessing.
All the kernels mentioned in this chapter respect the fact that the output
parameter is at most the input parameter, that is, k' < k.

While usually in Computer Science we measure the efficiency of an
algorithm by estimating its running time, the central measure of the
efficiency of a kernelization algorithm is a bound on its output size.
Although the actual running time of a kernelization algorithm is of-
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ten very important for practical applications, in theory a kernelization
algorithm is only required to run in polynomial time.

If we have a kernelization algorithm for a problem for which there is some
algorithm (with any running time) to decide whether (I, k) is a yes-instance,
then clearly the problem is FPT, as the size of the reduced instance I is
simply a function of k (and independent of the input size n). However, a
surprising result is that the converse is also true.

Lemma 2.2. If a parameterized problem Q) is FPT then it admits a kernel-
ization algorithm.

Proof. Since @ is FPT, there is an algorithm A deciding if (I, k) € @ in time
f(k)-]I]¢ for some computable function f and a constant c. We obtain a ker-
nelization algorithm for @) as follows. Given an input (I, k), the kernelization
algorithm runs A on (I, k), for at most |I|°T! steps. If it terminates with an
answer, use that answer to return either that (I, k) is a yes-instance or that
it is a no-instance. If A does not terminate within |I|°*! steps, then return
(I, k) itself as the output of the kernelization algorithm. Observe that since
A did not terminate in |I|°"! steps, we have that f(k) - [I|¢ > |I|°T!, and
thus |I| < f(k). Consequently, we have |I| + k < f(k) + k, and we obtain a
kernel of size at most f(k) + k; note that this upper bound is computable as
f(k) is a computable function. O

Lemma [2.2)implies that a decidable problem admits a kernel if and only
if it is fixed-parameter tractable. Thus, in a sense, kernelization can be
another way of defining fixed-parameter tractability.

However, kernels obtained by this theoretical result are usually of expo-
nential (or even worse) size, while problem-specific data reduction rules often
achieve quadratic (g(k) = O(k?)) or even linear-size (g(k) = O(k)) kernels.
So a natural question for any concrete FPT problem is whether it admits
a problem kernel that is bounded by a polynomial function of the param-
eter (g(k) = k°M). In this chapter we give polynomial kernels for several
problems using some elementary methods. In Chapter [0} we give more ad-
vanced methods for obtaining kernels.

2.2 Some simple kernels

In this section we give kernelization algorithms for VERTEX COVER and
FEEDBACK ARC SET IN TOURNAMENTS (FAST) based on a few natural
reduction rules.
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2.2.1 VERTEX COVER

Let G be a graph and S C V(G). The set S is called a vertez cover if for
every edge of G at least one of its endpoints is in S. In other words, the
graph G — S contains no edges and thus V(G) \ S is an independent set. In
the VERTEX COVER problem, we are given a graph G and a positive integer
k as input, and the objective is to check whether there exists a vertex cover
of size at most k.

The first reduction rule is based on the following simple observation. For
a given instance (G, k) of VERTEX COVER, if the graph G has an isolated
vertex, then this vertex does not cover any edge and thus its removal does
not change the solution. This shows that the following rule is safe.

Reduction VC.1. If G contains an isolated vertex v, delete v from G. The
new instance is (G — v, k).

The second rule is based on the following natural observation:

If G contains a vertex v of degree more than k, then v should be in
every vertex cover of size at most k.

Indeed, this is because if v is not in a vertex cover, then we need at
least k& 4 1 vertices to cover edges incident to v. Thus our second rule is the
following.

Reduction VC.2. If there is a vertex v of degree at least k + 1, then delete
v (and its incident edges) from G and decrement the parameter k by 1. The
new instance is (G — v,k — 1).

Observe that exhaustive application of reductions and completely
removes the vertices of degree 0 and degree at least k + 1. The next step is
the following observation.

If a graph has maximum degree d, then a set of k vertices can cover at
most kd edges.

This leads us to the following lemma.

Lemma 2.3. If (G, k) is a yes-instance and none of the reduction rules
is applicable to G, then |V(G)| < k* + k and |E(G)| < k2.

Proof. Because we cannot apply Reductions anymore on G, G has
no isolated vertices. Thus for every vertex cover S of G, every vertex of

G — S should be adjacent to some vertex from S. Since we cannot apply
Reductions every vertex of G has degree at most k. It follows that
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V(G — S)| < k|S| and hence |[V(G)| < (k + 1)|S|. Since (G, k) is a yes-
instance, there is a vertex cover S of size at most k, so |[V(G)| < (k + 1)k.
Also every edge of G is covered by some vertex from a vertex cover and every
vertex can cover at most k edges. Hence if G’ has more than k? edges, this is
again a no-instance. m]

Lemma[2.3]allows us to claim the final reduction rule that explicitly bounds
the size of the kernel.

Reduction VC.3. Let (G, k) be an input instance such that Reductions[VC.]|
and are not applicable to (G, k). If k < 0 and G has more than k? + k
vertices, or more than k? edges, then conclude that we are dealing with a
no-instance.

Finally, we remark that all reduction rules are trivially applicable in linear
time. Thus, we obtain the following theorem.

Theorem 2.4. VERTEX COVER admits a kernel with O(k?) wvertices and
O(k?) edges.

2.2.2 FEEDBACK ARC SET IN TOURNAMENTS

In this section we discuss a kernel for the FEEDBACK ARC SET IN TOURNA-
MENTS problem. A tournament is a directed graph T such that for every pair
of vertices u,v € V(T), exactly one of (u,v) or (v,u) is a directed edge (also
often called an arc) of T. A set of edges A of a directed graph G is called a
feedback arc set if every directed cycle of G contains an edge from A. In other
words, the removal of A from G turns it into a directed acyclic graph. Very
often, acyclic tournaments are called transitive (note that then E(G) is a
transitive relation). In the FEEDBACK ARC SET IN TOURNAMENTS problem
we are given a tournament 7" and a nonnegative integer k. The objective is
to decide whether 7 has a feedback arc set of size at most k.

For tournaments, the deletion of edges results in directed graphs which
are not tournaments anymore. Because of that, it is much more convenient
to use the characterization of a feedback arc set in terms of “reversing edges”.
We start with the following well-known result about topological orderings of
directed acyclic graphs.

Lemma 2.5. A directed graph G is acyclic if and only if it is possible to
order its vertices in such a way such that for every directed edge (u,v), we
have u < v.

We leave the proof of Lemma [2.5| as an exercise; see Exercise Given
a directed graph G and a subset F' C E(G) of edges, we define G & F' to be
the directed graph obtained from G by reversing all the edges of F'. That is,
if rev(F) = {(u,v) : (v,u) € F}, then for G ® F the vertex set is V(G)
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and the edge set E(G ® F) = (E(G) Urev(F)) \ F. Lemma [2.5| implies the
following.

Observation 2.6. Let G be a directed graph and let F' be a subset of edges
of G. If G ® F is a directed acyclic graph then F' is a feedback arc set of G.

The following lemma shows that, in some sense, the opposite direction
of the statement in Observation [2.6] is also true. However, the minimality
condition in Lemma [2.7]is essential, see Exercise [2.2

Lemma 2.7. Let G be a directed graph and F be a subset of E(G). Then
F is an inclusion-wise minimal feedback arc set of G if and only if F is an
inclusion-wise minimal set of edges such that G ® F is an acyclic directed
graph.

Proof. We first prove the forward direction of the lemma. Let F be an
inclusion-wise minimal feedback arc set of G. Assume to the contrary that
G®F has a directed cycle C. Then C cannot contain only edges of E(G)\F, as
that would contradict the fact that F'is a feedback arc set. Let f1, fo, -+, fe
be the edges of C Nrev(F) in the order of their appearance on the cycle C,
and let e; € F be the edge f; reversed. Since F' is inclusion-wise minimal,
for every e;, there exists a directed cycle C; in G such that F N C; = {e;}.
Now consider the following closed walk W in G: we follow the cycle C, but
whenever we are to traverse an edge f; € rev(F') (which is not present in
G), we instead traverse the path C; — e;. By definition, W is a closed walk
in G and, furthermore, note that W does not contain any edge of F. This
contradicts the fact that F is a feedback arc set of G.

The minimality follows from Observation That is, every set of edges
F such that G ® F is acyclic is also a feedback arc set of G, and thus, if F' is
not a minimal set such that G ® F is acyclic, then it will contradict the fact
that F' is a minimal feedback arc set.

For the other direction, let F' be an inclusion-wise minimal set of edges
such that G ® F' is an acyclic directed graph. By Observation [2.6] F' is a
feedback arc set of GG. Moreover, F' is an inclusion-wise minimal feedback arc
set, because if a proper subset F’ of F' is an inclusion-wise minimal feedback
arc set of G, then by the already proved implication of the lemma, G ® F’ is
an acyclic directed graph, a contradiction with the minimality of F'. O

We are ready to give a kernel for FEEDBACK ARC SET IN TOURNAMENTS.

Theorem 2.8. FEEDBACK ARC SET IN TOURNAMENTS admits a kernel with
at most k? + 2k wvertices.

Proof. Lemma implies that a tournament 7 has a feedback arc set of
size at most k if and only if it can be turned into an acyclic tournament by
reversing directions of at most k edges. We will use this characterization for
the kernel.

In what follows by a triangle we mean a directed cycle of length three. We
give two simple reduction rules.
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Reduction FAST.1. If an edge e is contained in at least k + 1 triangles,
then reverse e and reduce k by 1.

Reduction FAST.2. If a vertex v is not contained in any triangle, then
delete v from T

The rules follow similar guidelines as in the case of VERTEX COVER. In
Reduction we greedily take into a solution an edge that partic-
ipates in k + 1 otherwise disjoint forbidden structures (here, triangles).
In Reduction [FAST.2] we discard vertices that do not participate in any
forbidden structure, and should be irrelevant to the problem.

However, a formal proof of the safeness of Reduction is not
immediate: we need to verify that deleting v and its incident edges does
not make make a yes-instance out of a no-instance.

Note that after applying any of the two rules, the resulting graph is again
a tournament. The first rule is safe because if we do not reverse e, we have
to reverse at least one edge from each of k£ + 1 triangles containing e. Thus e
belongs to every feedback arc set of size at most k.

Let us now prove the safeness of the second rule. Let X = Nt (v) be the
set of heads of directed edges with tail v and let Y = N~ (v) be the set of
tails of directed edges with head v. Because T is a tournament, X and Y is a
partition of V(T')\ {v}. Since v is not a part of any triangle in T', we have that
there is no edge from X to Y (with head in Y and tail in X). Consequently,
for any feedback arc set A; of tournament 7T[X] and any feedback arc set
Az of tournament T'[Y], the set A; U Ay is a feedback arc set of T. As the
reverse implication is trivial (for any feedback arc set A in T', AN E(T[X]) is
a feedback arc set of T[X], and AN E(T[Y]) is a feedback arc set of T[Y]),
we have that (T, k) is a yes-instance if and only if (7' — v, k) is.

Finally, we show that every reduced yes-instance 7', an instance on which
none of the presented reduction rules are applicable, has at most k(k + 2)
vertices. Let A be a feedback arc set of a reduced instance T of size at most
k. For every edge e € A, aside from the two endpoints of e, there are at most
k vertices that are in triangles containing e — otherwise we would be able
to apply Reduction Since every triangle in T' contains an edge of A
and every vertex of T is in a triangle, we have that T has at most k(k + 2)
vertices.

Thus, given (T, k) we apply our reduction rules exhaustively and obtain
an equivalent instance (7", k’). If T has more than k'? + k' vertices, then the
algorithm returns that (7, %) is a no-instance, otherwise we get the desired
kernel. This completes the proof of the theorem. a
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2.2.3 EDGE CLIQUE COVER

Not all FPT problems admit polynomial kernels. In the EDGE CLIQUE
COVER problem, we are given a graph G and a nonnegative integer k£, and
the goal is to decide whether the edges of G can be covered by at most
k cliques. In this section we give an exponential kernel for EDGE CLIQUE
CoVER. In Theorem [14.20| of Section [*14.3.3] we remark that this simple
kernel is essentially optimal.

Let us recall the reader that we use N(v) = {u : uv € E(G)} to denote
the neighborhood of vertex v in G, and N[v] = N(v) U {v} to denote the
closed neighborhood of v. We apply the following data reduction rules in the
given order (i.e., we always use the lowest-numbered rule that modifies the
instance).

Reduction ECC.1. Remove isolated vertices.

Reduction ECC.2. If there is an isolated edge uv (a connected component
that is just an edge), delete it and decrease k by 1. The new instance is
(G —{u,v}, k—1).

Reduction ECC.3. If there is an edge uv whose endpoints have exactly the
same closed neighborhood, that is, N[u] = NJv], then delete v. The new
instance is (G — v, k).

The crux of the presented kernel for EDGE CLIQUE COVER is an obser-
vation that two true twins (vertices u and v with N[u] = N[v]) can be
treated in exactly the same way in some optimum solution, and hence
we can reduce them. Meanwhile, the vertices that are contained in ex-
actly the same set of cliques in a feasible solution have to be true twins.
This observation bounds the size of the kernel.

The safeness of the first two reductions is trivial, while the safeness of
Reduction [ECC.3] follows from the observation that a solution in G — v can
be extended to a solution in G by adding v to all the cliques containing u
(see Exercise [2.3)).

Theorem 2.9. EDGE CLIQUE COVER admits a kernel with at most 2F ver-
tices.

Proof. We start with the following claim.

Claim. If (G, k) is a reduced yes-instance, on which none of the presented
reduction rules can be applied, then |V (G)| < 2*.

Proof. Let Cq,...,C) be an edge clique cover of G. We claim that G has at
most 2F vertices. Targeting a contradiction, let us assume that G has more



26 2 Kernelization

than 2% vertices. We assign to each vertex v € V(G) a binary vector b, of
length k, where bit ¢, 1 < i < k, is set to 1 if and only if v is contained in clique
C;. Since there are only 2* possible vectors, there must be u # v € V(G)
with b, = b,. If b, and b, are zero vectors, the first rule applies; otherwise,
u and v are contained in the same cliques. This means that v and v are
adjacent and have the same neighborhood; thus either Reduction or
Reduction applies. Hence, if G has more than 2* vertices, at least one
of the reduction rules can be applied to it, which is a contradiction to the
initial assumption that G is reduced. This completes the proof of the claim.

O

The kernelization algorithm works as follows. Given an instance (G, k), it

applies Reductions [ECC.1] [ECC.2] and [ECC.3| exhaustively. If the resulting
graph has more than 2" vertices the kernelization algorithm outputs that the

input instance is a no-instance, else it outputs the reduced instance. a

2.3 Crown decomposition

Crown decomposition is a general kernelization technique that can be used
to obtain kernels for many problems. The technique is based on the classical
matching theorems of Kénig and Hall.

Recall that for disjoint vertex subsets U, W of a graph G, a matching M
is called a matching of U into W if every edge of M connects a vertex of U
and a vertex of W and, moreover, every vertex of U is an endpoint of some
edge of M. In this situation, we also say that M saturates U.

Definition 2.10 (Crown decomposition). A crown decomposition of a
graph G is a partitioning of V(@) into three parts C, H and R, such that

1. C is nonempty.

2. C is an independent set.

3. There are no edges between vertices of C' and R. That is, H separates C
and R.

4. Let E’ be the set of edges between vertices of C' and H. Then E’ contains
a matching of size |H|. In other words, G contains a matching of H into

C.

The set C can be seen as a crown put on head H of the remaining part R, see
Fig. Note that the fact that E’ contains a matching of size |H| implies
that there is a matching of H into C. This is a matching in the subgraph G’,
with the vertex set C' U H and the edge set E’, saturating all the vertices of
H.

For finding a crown decomposition in polynomial time, we use the following
well known structural and algorithmic results. The first is a mini-max theorem
due to Kénig.
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Fig. 2.1: Example of a crown decomposition. Set C'is an independent set, H
separates C' and R, and there is a matching of H into C

Theorem 2.11 (K6nig’s theorem, [303]). In every undirected bipartite
graph the size of a mazimum matching is equal to the size of a minimum
vertex cover.

Let us recall that a matching saturates a set of vertices S when every
vertex in S is incident to an edge in the matching. The second classic result
states that in bipartite graphs, a trivial necessary condition for the existence
of a matching is also sufficient.

Theorem 2.12 (Hall’s theorem, [256]). Let G be an undirected bipartite
graph with bipartition (V1,Va). The graph G has a matching saturating Vi if
and only if for all X C V1, we have |[N(X)| > | X]|.

The following theorem is due to Hopcroft and Karp [268]. The proof of
the (nonstandard) second claim of the theorem is deferred to Exercise [2.21

Theorem 2.13 (Hopcroft-Karp algorithm, [268]). Let G be an undi-
rected bipartite graph with bipartition V1 and Vi, on n vertices and m edges.
Then we can find a mazimum matching as well as a minimum vertex cover
of G in time O(m+/n). Furthermore, in time O(m+/n) either we can find a
matching saturating Vi or an inclusion-wise minimal set X C Vi such that
IN(X)| < [X].

The following lemma is the basis for kernelization algorithms using crown
decomposition.

Lemma 2.14 (Crown lemma). Let G be a graph without isolated vertices
and with at least 3k + 1 vertices. There is a polynomial-time algorithm that
either

e finds a matching of size k+ 1 in G; or
e finds a crown decomposition of G.

Proof. We first find an inclusion-maximal matching M in G. This can be
done by a greedy algorithm. If the size of M is k + 1, then we are done.
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Hence, we assume that |M| < k, and let Vj; be the endpoints of M. We have
|Var| < 2k. Because M is a maximal matching, the remaining set of vertices
I =V (G)\ Vi is an independent set.

Consider the bipartite graph Gy y,, formed by edges of G between Vj,
and I. We compute a minimum-sized vertex cover X and a maximum sized
matching M’ of the bipartite graph G; y,, in polynomial time using Theo-
rem We can assume that |M’| < k, for otherwise we are done. Since
|X| = |M’'| by Konig’s theorem (Theorem [2.11)), we infer that |X| < k.

If no vertex of X is in Vjy, then X C I. We claim that X = I. For
a contradiction assume that there is a vertex w € I\ X. Because G has no
isolated vertices there is an edge, say wz, incident to w in Gy y,,. Since G v,
is bipartite, we have that z € V). However, X is a vertex cover of Gy v,
such that X N Vj; = (0, which implies that w € X. This is contrary to our
assumption that w ¢ X, thus proving that X = I. But then |I| < |X]| < k,
and G has at most

[I| + |Vam| < k+ 2k =3k

vertices, which is a contradiction.

Hence, X NVj; # 0. We obtain a crown decomposition (C, H, R) as follows.
Since | X| = |M’|, every edge of the matching M’ has exactly one endpoint
in X. Let M* denote the subset of M’ such that every edge from M* has
exactly one endpoint in X N Vj; and let Vj;« denote the set of endpoints of
edges in M™. We define head H = X NV = X NV, crown C = Vi« N 1,
and the remaining part R = V(G) \ (C U H) = V(G) \ Vas+. In other words,
H is the set of endpoints of edges of M* that are present in Vj; and C is
the set of endpoints of edges of M* that are present in I. Obviously, C is
an independent set and by construction, M* is a matching of H into C.
Furthermore, since X is a vertex cover of Gy y,,, every vertex of C' can be
adjacent only to vertices of H and thus H separates C and R. This completes
the proof. O

The crown lemma gives a relatively strong structural property of graphs
with a small vertex cover (equivalently, a small maximum matching). If
in a studied problem the parameter upper bounds the size of a vertex
cover (maximum matching), then there is a big chance that the struc-
tural insight given by the crown lemma would help in developing a small
kernel — quite often with number of vertices bounded linearly in the
parameter.

We demonstrate the application of crown decompositions on kernelization
for VERTEX COVER and MAXIMUM SATISFIABILITY.



2.3 Crown decomposition 29

2.8.1 VERTEX COVER

Consider a VERTEX COVER instance (G, k). By an exhaustive application of
Reduction we may assume that G has no isolated vertices. If |V (G)| >
3k, we may apply the crown lemma to the graph G and integer k, obtaining
either a matching of size k+ 1, or a crown decomposition V(G) = CUH UR.
In the first case, the algorithm concludes that (G, k) is a no-instance.

In the latter case, let M be a matching of H into C. Observe that the
matching M witnesses that, for every vertex cover X of the graph G, X
contains at least |M| = |H| vertices of H U C to cover the edges of M. On
the other hand, the set H covers all edges of G that are incident to H U C.
Consequently, there exists a minimum vertex cover of G that contains H, and
we may reduce (G, k) to (G—H, k—|H|). Note that in the instance (G—H, k—
|H|), the vertices of C' are isolated and will be reduced by Reduction

As the crown lemma promises us that H # (), we can always reduce the
graph as long as |V(G)| > 3k. Thus, we obtain the following.

Theorem 2.15. VERTEX COVER admits a kernel with at most 3k vertices.

2.3.2 MAXIMUM SATISFIABILITY

For a second application of the crown decomposition, we look at the following
parameterized version of MAXIMUM SATISFIABILITY. Given a CNF formula
F, and a nonnegative integer k, decide whether F' has a truth assignment
satisfying at least k clauses.

Theorem 2.16. MAXIMUM SATISFIABILITY admits a kernel with at most k
variables and 2k clauses.

Proof. Let ¢ be a CNF formula with n variables and m clauses. Let ¢ be an
arbitrary assignment to the variables and let =1 be the assignment obtained
by complementing the assignment of . That is, if ¢ assigns 6 € {T,L} to
some variable x then —) assigns —§ to z. Observe that either 1) or —1) satisfies
at least m/2 clauses, since every clause is satisfied by ¢ or —¢) (or by both).
This means that, if m > 2k, then (p, k) is a yes-instance. In what follows we
give a kernel with n < k variables.

Let G, be the variable-clause incidence graph of ¢. That is, G, is a bi-
partite graph with bipartition (X,Y’), where X is the set of the variables of
¢ and Y is the set of clauses of . In G, there is an edge between a variable
z € X and a clause ¢ € Y if and only if either z, or its negation, is in c. If
there is a matching of X into Y in G, then there is a truth assignment sat-
isfying at least | X| clauses: we can set each variable in X in such a way that
the clause matched to it becomes satisfied. Thus at least | X| clauses are sat-
isfied. Hence, in this case, if k < | X|, then (¢, k) is a yes-instance. Otherwise,
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k > |X| = n, and we get the desired kernel. We now show that, if ¢ has at
least n > k variables, then we can, in polynomial time, either reduce ¢ to an
equivalent smaller instance, or find an assignment to the variables satisfying
at least k clauses (and conclude that we are dealing with a yes-instance).

Suppose ¢ has at least k variables. Using Hall’s theorem and a polynomial-
time algorithm computing a maximum-size matching (Theoremsand,
we can in polynomial time find either a matching of X into Y or an inclusion-
wise minimal set C' C X such that |[N(C)| < |C|. As discussed in the previous
paragraph, if we found a matching, then the instance is a yes-instance and
we are done. So suppose we found a set C' as described. Let H be N(C') and
R =V(G,)\(CUH). Clearly, N(C') C H, there are no edges between vertices
of C'and R and G[C] is an independent set. Select an arbitrary z € C. We
have that there is a matching of C'\ {z} into H since |[N(C")| > |C’| for every
C’ C C\ {z}. Since |C| > |H|, we have that the matching from C'\ {z} to H
is in fact a matching of H into C. Hence (C, H, R) is a crown decomposition
of G.

We prove that all clauses in H are satisfied in every assignment satisfying
the maximum number of clauses. Indeed, consider any assignment 1 that does
not satisfy all clauses in H. Fix any variable € C. For every variable y in
C\{x} set the value of y so that the clause in H matched to y is satisfied. Let
¢’ be the new assignment obtained from ¢ in this manner. Since N(C) C H
and v’ satisfies all clauses in H, more clauses are satisfied by ¢’ than by .
Hence v cannot be an assignment satisfying the maximum number of clauses.

The argument above shows that (¢, k) is a yes-instance to MAXIMUM SAT-
ISFIABILITY if and only if (¢ \ H,k — |H|) is. This gives rise to the following
simple reduction.

Reduction MSat.1. Let (o, k) and H be as above. Then remove H from ¢
and decrease k by |H|. That is, (¢ \ H,k — |H|) is the new instance.

Repeated applications of Reduction and the arguments described
above give the desired kernel. This completes the proof of the theorem. O

2.4 Expansion lemma

In the previous subsection, we described crown decomposition techniques
based on the classical Hall’s theorem. In this section, we introduce a powerful
variation of Hall’s theorem, which is called the expansion lemma. This lemma
captures a certain property of neighborhood sets in graphs and can be used
to obtain polynomial kernels for many graph problems. We apply this result
to get an O(k?) kernel for FEEDBACK VERTEX SET in Chapter @

A g-star, ¢ > 1, is a graph with ¢+ 1 vertices, one vertex of degree ¢, called
the center, and all other vertices of degree 1 adjacent to the center. Let G be
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a bipartite graph with vertex bipartition (A, B). For a positive integer ¢, a
set of edges M C E(G) is called by a g-ezpansion of A into B if

e every vertex of A is incident to exactly ¢ edges of M;
e M saturates exactly g|A| vertices in B.

Let us emphasize that a g-expansion saturates all vertices of A. Also, for
every u,v € A, u # v, the set of vertices F, adjacent to u by edges of M does
not intersect the set of vertices E, adjacent to v via edges of M, see Fig.[2.2]
Thus every vertex v € A could be thought of as the center of a star with
its g leaves in B, with all these | A| stars being vertex-disjoint. Furthermore,
a collection of these stars is also a family of ¢ edge-disjoint matchings, each
saturating A.

A

Fig. 2.2: Set A has a 2-expansion into B

Let us recall that, by Hall’s theorem (Theorem[2.12)), a bipartite graph with
bipartition (A4, B) has a matching of A into B if and only if |[N(X)| > |X]|
for all X C A. The following lemma is an extension of this result.

Lemma 2.17. Let G be a bipartite graph with bipartition (A, B). Then there
is a g-expansion from A into B if and only if |[N(X)| > ¢q|X| for every X C A.
Furthermore, if there is no g-expansion from A into B, then a set X C A
with |[N(X)| < q|X| can be found in polynomial time.

Proof. If A has a ¢g-expansion into B, then trivially |[N(X)| > ¢|X| for every
X C A.

For the opposite direction, we construct a new bipartite graph G’ with
bipartition (A’, B) from G by adding (¢ — 1) copies of all the vertices in A.
For every vertex v € A all copies of v have the same neighborhood in B as v.
We would like to prove that there is a matching M from A’ into B in G'. If we
prove this, then by identifying the endpoints of M corresponding to the copies
of vertices from A, we obtain a g-expansion in G. It suffices to check that
the assumptions of Hall’s theorem are satisfied in G’. Assume otherwise, that
there is a set X C A’ such that |Ng/(X)| < |X|. Without loss of generality,
we can assume that if X contains some copy of a vertex v, then it contains
all the copies of v, since including all the remaining copies increases | X| but
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does not change |Ng/(X)|. Hence, the set X in A’ naturally corresponds to
the set X4 of size | X|/q in A, the set of vertices whose copies are in X. But
then [Ng(X4)| = |Ner(X)| < |X| = q|X 4|, which is a contradiction. Hence
A’ has a matching into B and thus A has a g-expansion into B.

For the algorithmic claim, note that, if there is no g-expansion from A
into B, then we can use Theorem to find a set X C A’ such that
|Ng/(X)| < |X]|, and the corresponding set X 4 satisfies |[Ng(Xa)| < q| X al-

O

Finally, we are ready to prove a lemma analogous to Lemma

Lemma 2.18. (Expansion lemma) Let ¢ > 1 be a positive integer and G
be a bipartite graph with vertex bipartition (A, B) such that

(1) |B| = ¢|A], and
(1) there are no isolated vertices in B.

Then there exist nonempty vertex sets X C A and Y C B such that

e there is a g-expansion of X into Y, and
e no vertez in'Y has a neighbor outside X, that is, N(Y) C X.

Furthermore, the sets X and Y can be found in time polynomial in the size

of G.

Note that the sets X, Y and V(G) \ (X UY") form a crown decomposition
of G with a stronger property — every vertex of X is not only matched into
Y, but there is a g-expansion of X into Y. We proceed with the proof of
expansion lemma.

Proof. We proceed recursively, at every step decreasing the cardinality of A.
When |A| = 1, the claim holds trivially by taking X = A and Y = B.

We apply Lemma [2.17 to G. If A has a g-expansion into B, then we
are done as we may again take X = A and Y = B. Otherwise, we can in
polynomial time find a (nonempty) set Z C A such that |[N(Z)| < ¢q|Z|. We
construct the graph G’ by removing Z and N(Z) from G. We claim that G’
satisfies the assumptions of the lemma. Indeed, because we removed less than
g times more vertices from B than from A, we have that (¢) holds for G’.
Moreover, every vertex from B\ N(Z) has no neighbor in Z, and thus (i)
also holds for G'. Note that Z # A, because otherwise N(A) = B (there are
no isolated vertices in B) and |B| > ¢|A|. Hence, we recurse on the graph G’
with bipartition (A \ Z, B\ N(Z)), obtaining nonempty sets X C A\ Z and
Y C B\ N(Z) such that there is a g-expansion of X into Y and such that
N/ (Y) € X. Because Y C B\ N(Z), we have that no vertex in Y has a
neighbor in Z. Hence, Ng/(Y) = Ng(Y) C X and the pair (X,Y) satisfies
all the required properties. a
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The expansion lemma is useful when the matching saturating the head
part H in the crown lemma turns out to be not sufficient for a reduction,
and we would like to have a few vertices of the crown C matched to
a single vertex of the head H. For example, this is the case for the
FEEDBACK VERTEX SET kernel presented in Section[9.1] where we need
the case ¢ = 2.

2.5 Kernels based on linear programming

In this section we design a 2k-vertex kernel for VERTEX COVER exploiting
the solution to a linear programming formulation of VERTEX COVER.

Many combinatorial problems can be expressed in the language of INTE-
GER LINEAR PROGRAMMING (ILP). In an INTEGER LINEAR PROGRAMMING
instance, we are given a set of integer-valued variables, a set of linear inequal-
ities (called constraints) and a linear cost function. The goal is to find an (in-
teger) evaluation of the variables that satisfies all constraints, and minimizes
or maximizes the value of the cost function.

Let us give an example on how to encode a VERTEX COVER instance (G, k)
as an INTEGER LINEAR PROGRAMMING instance. We introduce n = |V (G)|
variables, one variable x, for each vertex v € V(G). Setting variable x, to 1
means that v is in the vertex cover, while setting x, to 0 means that v is not
in the vertex cover. To ensure that every edge is covered, we can introduce
constraints x,,+x, > 1 for every edge uv € E(G). The size of the vertex cover
is given by >, ev (@) To- In the end, we obtain the following ILP formulation:

minimize Y-, cy g To

subject to x, + x, > 1 for every uv € E(G),
0<z, <1 foreveryveV(G),
Ty €L for every v € V(G).

(2.1)

Clearly, the optimal value of is at most k if and only if G has a vertex
cover of size at most k.

As we have just seen, INTEGER LINEAR PROGRAMMING is at least as hard
as VERTEX COVER, so we do not expect it to be polynomial-time solvable. In
fact, it is relatively easy to express many NP-hard problems in the language of
INTEGER LINEAR PROGRAMMING. In Section [6.2] we discuss FPT algorithms
for INTEGER LINEAR PROGRAMMING and their application in proving fixed-
parameter tractability of other problems.

Here, we proceed in a different way: we relax the integrality requirement
of INTEGER LINEAR PROGRAMMING, which is the main source of the hard-
ness of this problem, to obtain LINEAR PROGRAMMING. That is, in LINEAR
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PROGRAMMING the instance looks exactly the same as in INTEGER LINEAR
PROGRAMMING, but the variables are allowed to take arbitrary real values,
instead of just integers.

In the case of VERTEX COVER, we relax by dropping the constraint
x, € Z for every v € V(G). In other words, we obtain the following LINEAR
PROGRAMMING instance. For a graph G, we call this relaxation LPVC(G).

minimize Y, cy ) To
subject to xz, +x, > 1 for every uv € E(G), (2.2)
0<z,<1 foreveryveV(Q).

Note that constraints =, < 1 can be omitted because every optimal solu-
tion of LPVC(G) satisfies these constraints.

Observe that in LPVC(G), a variable x, can take fractional values in the
interval [0, 1], which corresponds to taking “part of the vertex v” into a vertex
cover. Consider an example of G being a triangle. A minimum vertex cover
of a triangle is of size 2, whereas in LPVC(G) we can take z, = 1 for every
v € V(G), obtaining a feasible solution of cost 2. Thus, LPVC(G) does not
express exactly the VERTEX COVER problem on graph G, but its optimum
solution can still be useful to learn something about minimum vertex covers
in G.

The main source of utility of LINEAR PROGRAMMING comes from the
fact that LINEAR PROGRAMMING can be solved in polynomial time, even in
some general cases where there are exponentially many constraints, accessed
through an oracle. For this reason, LINEAR PROGRAMMING has found abun-
dant applications in approximation algorithms (for more on this topic, we
refer to the book of Vazirani [427]). In this section, we use LP to design a
small kernel for VERTEX COVER. In Section we will use LPVC(G) to
obtain an FPT branching algorithm for VERTEX COVER.

Let us now have a closer look at the relaxation LPVC(G). Fix an optimal
solution (2, )yev () of LPVC(G). In this solution the variables corresponding
to vertices of G take values in the interval [0, 1]. We partition V(G) according
to these values into three sets as follows.

e Vo={veV(G) : z, <3},

o Vi={veV(GQ) : z,= 3},

e Vi={veV(G) : z, >3}

Theorem 2.19 (Nemhauser-Trotter theorem). There is a minimum
vertex cover S of G such that

ncscwvu V%.
Proof. Let S* C V(G) be a minimum vertex cover of G. Define

S=(S*\ Vo) UVA.
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By the constraints of (2.2), every vertex of V; can have a neighbor only in
V1 and thus S is also a vertex cover of G. Moreover, V; C S C V; U V%. It
suffices to show that S is a minimum vertex cover. Assume the contrary, i.e.,
|S] > |S*|. Since |S| = |S*| — [Vo N S*| + |V1 \ S*| we infer that

Vo S| < |3\ SI. (2.3)

Let us define
e =min{|z, — 3| : vEV UV}

We decrease the fractional values of vertices from V; \ S* by € and increase
the values of vertices from Vy N S* by €. In other words, we define a vector
(Yo)vev(a) as
x, —e ifveVp\ S
Yo =R Ty + ifveVygnS*,
Ty otherwise.

Note that &€ > 0, because otherwise V5 = V4 = (), a contradiction with (2.3).
This, together with (2.3), implies that

Z Yo < Z Ly - (24)

veV(G) veV(G)

Now we show that (y,)vev(q) is a feasible solution, i.e., it satisfies the con-
straints of LPVC(G). Since (z,),cv () is a feasible solution, by the defi-
nition of £ we get 0 < y, < 1 for every v € V(G). Consider an arbitrary
edge uwv € E(QG). If none of the endpoints of uv belong to V; \ S*, then both
Yu = Ty and Yy > Ty, SO Yy + Yo = Ty + T, > 1. Otherwise, by symmetry we
can assume that u € V4 \ S*, and hence y,, = x,, — €. Because S* is a vertex
cover, we have that v € S*. If v € V, N S*, then

yu+yv:xu_€+l’v+f§:$u+$v21.

Otherwise, v € (V% uVi)NS*. Then y, > z, > % Note also that z, —e > %
by the definition of . It follows that
1 1
Yut Yo =Ty —E+ Yp = 54—5:1.
Thus (yu)vev(q) is a feasible solution of LPVC(G) and hence (2.4) contra-
dicts the optimality of (24 )vev(a)- |

Theorem allows us to use the following reduction rule.

Reduction VC.4. Let (z,),cv (@) be an optimum solution to LPVC(G) in
a VERTEX COVER instance (G, k) and let Vg, V1 and V) be defined as above.
If ZUeV(G) x, > k, then conclude that we are dealing with a no-instance.
Otherwise, greedily take into the vertex cover the vertices of V;. That is,
delete all vertices of Vo U Vi, and decrease k by |V].
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Let us now formally verify the safeness of Reduction [VC.4]
Lemma 2.20. Reduction [VC]] is safe.

Proof. Clearly, if (G,k) is a yes-instance, then an optimum solution to
LPVC(G) is of cost at most k. This proves the correctness of the step if
we conclude that (G, k) is a no-instance.

Let G’ = G—(VoUV1) = G[Vi] and k" = k—|V1|. We claim that (G, k) is a
yes-instance of VERTEX COVER if and only if (G’, k') is. By Theorem we
know that G has a vertex cover S of size at most k such that V; C S C VluV%.
Then S’ = SN Vi is a vertex cover in G’ and the size of S’ is at most
E—|Vi| =K.

For the opposite direction, let S’ be a vertex cover in G’. For every solution
of LPVC(G), every edge with an endpoint from Vj should have an endpoint
in V1. Hence, S = S’ U V; is a vertex cover in G and the size of this vertex
cover is at most k' + |V1| = k. O

Reduction leads to the following kernel for VERTEX COVER.
Theorem 2.21. VERTEX COVER admits a kernel with at most 2k vertices.

Proof. Let (G,k) be an instance of VERTEX COVER. We solve LPVC(G)
in polynomial time, and apply Reduction [VC.4] to the obtained solution
(7)vev(a), either concluding that we are dealing with a no-instance or ob-
taining an instance (G’,k’). Lemma guarantees the safeness of the re-
duction. For the size bound, observe that

V(@) =Vil= > 2w, <2 > @ <2k

UGV% veV(G)
O

While it is possible to solve linear programs in polynomial time, usually
such solutions are less efficient than combinatorial algorithms. The specific
structure of the LP-relaxation of the vertex cover problem (2.2) allows us to
solve it by reducing to the problem of finding a maximum-size matching in a
bipartite graph.

Lemma 2.22. For a graph G with n vertices and m edges, the optimal
(fractional) solution to the linear program LPVC(G) can be found in time

O(my/n).

Proof. We reduce the problem of solving LPVC(G) to a problem of finding
a minimum-size vertex cover in the following bipartite graph H. Its vertex
set consists of two copies V3 and V5 of the vertex set of G. Thus, every
vertex v € V(@) has two copies v; € V; and vy € V5 in H. For every edge
wv € E(H), we have edges ujvy and viug in H.



2.5 Kernels based on linear programming 37

Using the Hopcroft-Karp algorithm (Theorem [2.13), we can find a mini-
mum vertex cover S of H in time O(m/n). We define a vector (z,),cv (q)
as follows: if both vertices v; and vo are in S, then z, = 1. If exactly one of
the vertices v; and vy is in S, we put z, = % We put z, = 0 if none of the
vertices v; and vy are in S. Thus

> w =L

veV(G)

Since S is a vertex cover in H, we have that for every edge uwv € E(G) at
least two vertices from {u, ug, vy, v} should be in S. Thus z,, + z, > 1 and
vector (,)yev (i) satisfies the constraints of LPVC(G).

To show that (z,)ycv (@) is an optimal solution of LPVC(G), we argue
as follows. Let (y,)yev(g) be an optimal solution of LPVC(G). For every
vertex v;, ¢ € {1,2}, of H, we assign the weight w(v;) = y,. This weight
assignment is a fractional vertex cover of H, i.e., for every edge vius € E(H),
w(v1) + w(uz) > 1. We have that

S o=y X (wlon) +wlw))

veV(G) UEV(G)

On the other hand, the value ZUGV(H)W(U) of any fractional solution of
LPVC(H) is at least the size of a maximum matching M in H. A reader
familiar with linear programming can see that this follows from weak duality;
we also ask you to verify this fact in Exercise

By Kénig’s theorem (Theorem 2.11), M| = |S|. Hence

1 |S|
> yv—g > (wlo) +we)) =5 Y w( 27 Z
veV(G) veV(G) veV (H) ev(G
Thus (7,),ev () is an optimal solution of LPVC(G). O
We immediately obtain the following.

Corollary 2.23. For a graph G with n vertices and m edges, the kernel of
Theorem can be found in time O(m/n).

The following proposition is another interesting consequence of the proof
of Lemma [2.221

Proposition 2.24. Let G be a graph on n wvertices and m edges. Then
LPVC(G) has a half-integral optimal solution, i.e., all variables have values
in the set {0, 1 5, 1}. Furthermore, we can find a half-integral optimal solution

in time O(my/n).



38 2 Kernelization

In short, we have proved properties of LPVC(G). There exists a half-
integral optimal solution (z),cv (@) to LPVC(G), and it can be found
efficiently. We can look at this solution as a partition of V(G) into
parts Vj, V1 , and V; with the following message: greedily take V7 into a
solution, do not take any vertex of V[ into a solution, and in V1 we do
not know what to do and that i 1s the hard part of the problem. However
as an optimum solution pays 3 1 for every vertex of V1 the hard part —
the kernel of the problem — cannot have more than 2k vertices.

2.6 Sunflower lemma

In this section we introduce a classical result of Erdés and Rado and show
some of its applications in kernelization. In the literature it is known as the
sunflower lemma or as the Erdgs-Rado lemma. We first define the terminology
used in the statement of the lemma. A sunflower with k petals and a core Y
is a collection of sets Si,...,Sk such that §;NS; =Y for all i # j; the sets
S;\Y are petals and we require none of them to be empty. Note that a family
of pairwise disjoint sets is a sunflower (with an empty core).

Theorem 2.25 (Sunflower lemma). Let A be a family of sets (without
duplicates) over a universe U, such that each set in A has cardinality exactly
d. If |[A] > d!(k — 1)%, then A contains a sunflower with k petals and such a
sunflower can be computed in time polynomial in |A|, |U|, and k.

Proof. We prove the theorem by induction on d. For d = 1, i.e., for a family
of singletons, the statement trivially holds. Let d > 2 and let A be a family
of sets of cardinality at most d over a universe U such that |A| > d!(k —1)%.

Let G = {S1,...,S¢} C A be an inclusion-wise maximal family of pairwise
disjoint sets in A. If £ > k then G is a sunflower with at least k petals. Thus
we assume that £ < k. Let S = Ule S;. Then |S| < d(k — 1). Because G is
maximal, every set A € A intersects at least one set from G, i.e., AN S # (.
Therefore, there is an element v € U contained in at least

Al dl(k—1)¢

151> D) =(d-1)!(k—1)""

sets from 4. We take all sets of A containing such an element wu, and construct
a family A’ of sets of cardinality d — 1 by removing from each set the element
u. Because |A’| > (d—1)!(k—1)?"!, by the induction hypothesis, A’ contains
a sunflower {S7,...,5;} with k petals. Then {S7 U {u},...,S, U{u}} is a
sunflower in A with k petals.

The proof can be easily transformed into a polynomial-time algorithm, as
follows. Greedily select a maximal set of pairwise disjoint sets. If the size
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of this set is at least k, then return this set. Otherwise, find an element
u contained in the maximum number of sets in A, and call the algorithm
recursively on sets of cardinality d — 1, obtained from deleting u from the
sets containing wu. a

2.6.1 d-HITTING SET

As an application of the sunflower lemma, we give a kernel for d-HITTING
SET. In this problem, we are given a family A of sets over a universe U, where
each set in the family has cardinality at most d, and a positive integer k. The
objective is to decide whether there is a subset H C U of size at most k such
that H contains at least one element from each set in A.

Theorem 2.26. d-HITTING SET admits a kernel with at most 'k sets and
at most d'k? - d? elements.

Proof. The crucial observation is that if A contains a sunflower

S={S1,..., %41}

of cardinality k + 1, then every hitting set H of A of cardinality at most k
intersects the core Y of the sunflower S. Indeed, if H does not intersect Y,
it should intersect each of the k 4+ 1 disjoint petals S; \ Y. This leads to the
following reduction rule.

Reduction HS.1. Let (U, A, k) be an instance of d-HITTING SET and as-
sume that A contains a sunflower S = {S,...,Sk41} of cardinality k& + 1
with core Y. Then return (U, A’, k), where A’ = (A4\ S) U {Y'} is obtained
from A by deleting all sets {Si,...,Sk+1} and by adding a new set ¥ and

U =Uyen X.

Note that when deleting sets we do not delete the elements contained in
these sets but only those which do not belong to any set. Then the instances
(U, A k) and (U’, A", k) are equivalent, i.e. (U, A) contains a hitting set of
size k if and only if (U, A") does.

The kernelization algorithm is as follows. If for some d' € {1,...,d} the
number of sets in A of size exactly d’ is more than d'!k? , then the kerneliza-
tion algorithm applies the sunflower lemma to find a sunflower of size k£ + 1,
and applies Reduction on this sunflower. It applies this procedure ex-
haustively, and obtains a new family of sets A’ of size at most d!k? - d. If
) € A’ (that is, at some point a sunflower with an empty core has been
discovered), then the algorithm concludes that there is no hitting set of size
at most k£ and returns that the given instance is a no-instance. Otherwise,
every set contains at most d elements, and thus the number of elements in
the kernel is at most d!k? - d?. 0



40 2 Kernelization

Exercises

2.1 (&Z). Prove Lemma A digraph is acyclic if and only if it is possible to order its
vertices in such a way such that for every arc (u,v), we have u < v.

2.2 (&&). Give an example of a feedback arc set F' in a tournament G, such that G ® F is
not acyclic.

2.3 (&). Show that Reductions [ECC.1] [ECC.2] and [ECC.3| are safe.

2.4 (£Z). In the PoinT LiNe COVER problem, we are given a set of n points in the plane
and an integer k, and the goal is to check if there exists a set of k lines on the plane that
contain all the input points. Show a kernel for this problem with O(k?) points.

2.5. A graph G is a cluster graph if every connected component of GG is a clique. In the
CLUSTER EDITING problem, we are given as input a graph G and an integer k, and the
objective is to check whether one can edit (add or delete) at most k edges in G to obtain a
cluster graph. That is, we look for a set F' C (V(2G)) of size at most k, such that the graph
(V(@),(E(G)\ F)U(F\ E(Q@))) is a cluster graph.

1. Show that a graph G is a cluster graph if and only if it does not have an induced path
on three vertices (sequence of three vertices u, v, w such that uv and vw are edges and
uw ¢ E(G)).

2. Show a kernel for CLUsTER EpiTiNG with O(k?2) vertices.

2.6. In the SET SPLITTING problem, we are given a family of sets F over a universe U and
a positive integer k, and the goal is to test whether there exists a coloring of U with two
colors such that at least k sets in F are nonmonochromatic (that is, they contain vertices
of both colors). Show that the problem admits a kernel with at most 2k sets and O(k?)
universe size.

2.7. In the MiNnIMUM MAXiMAL MATCHING problem, we are given an undirected graph G
and a positive integer k, and the objective is to decide whether there exists a maximal
matching in G on at most k edges. Obtain a polynomial kernel for the problem (parame-
terized by k).

2.8. In the MiN-ONEs-2-SAT problem, we are given a 2-CNF formula ¢ and an integer
k, and the objective is to decide whether there exists a satisfying assignment for ¢ with at
most k variables set to true. Show that MiIN-ONEs-2-SAT admits a polynomial kernel.

2.9. In the d-BounDED-DEGREE DELETION problem, we are given an undirected graph G
and a positive integer k, and the task is to find at most k vertices whose removal decreases
the maximum vertex degree of the graph to at most d. Obtain a kernel of size polynomial
in k and d for the problem. (Observe that Verrex CovVER is the case of d = 0.)

2.10. Show a kernel with O(k2) vertices for the following problem: given a graph G and
an integer k, check if G contains a subgraph with exactly k edges, whose vertices are all
of odd degree in the subgraph.

2.11. A set of vertices D in an undirected graph G is called a dominating set if N[D] =
V(QG). In the DOMINATING SET problem, we are given an undirected graph G and a positive
integer k, and the objective is to test whether there exists a dominating set of size at most
k. Show that DoMINATING SET admits a polynomial kernel on graphs where the length of
the shortest cycle is at least 5. (What would you do with vertices with degree more than
k? Note that unlike for the VERTEX CoOVER problem, you cannot delete a vertex once you
pick it in the solution.)
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2.12. Show that FEEDBACK VERTEX SET admits a kernel with O(k) vertices on undirected
regular graphs.

2.13. We say that an n-vertex digraph is well-spread if every vertex has indegree at least
v/n. Show that DirEcTED FEEDBACK ARC SET, restricted to well-spread digraphs, is FPT
by obtaining a polynomial kernel for this problem. Does the problem remain FPT if we
replace the lower bound on indegree by any monotonically increasing function of n (like
logn or logloglogn)? Does the assertion hold if we replace indegree with outdegree? What
about DIRECTED FEEDBACK VERTEX SET?

2.14. In the ConNECTED VERTEX COVER problem, we are given an undirected graph G
and a positive integer k, and the objective is to decide whether there exists a vertex cover
C of G such that |C| < k and G[C] is connected.

1. Explain where the kernelization procedure described in Theorem for VERTEX
CoVER breaks down for the CoNNECTED VERTEX COVER problem.

2. Show that the problem admits a kernel with at most 2% + O(k?) vertices.

3. Show that if the input graph G does not contain a cycle of length 4 as a subgraph,
then the problem admits a kernel with at most O(k2) vertices.

2.15 (2). Extend the argument of the previous exercise to show that, for every fixed
d > 2, CoNNECTED VERTEX CoOVER admits a kernel of size O(k?) if restricted to graphs
that do not contain the biclique K4 4 as a subgraph.

2.16 (&). A graph G is chordal if it contains no induced cycles of length more than 3, that
is, every cycle of length at least 4 has a chord. In the CHOrRDAL COMPLETION problem, we
are given an undirected graph G and a positive integer k, and the objective is to decide
whether we can add at most k edges to G so that it becomes a chordal graph. Obtain a
polynomial kernel for CHorDAL COMPLETION (parameterized by k).

2.17 (2). In the Epce Disjoint CycLE PACKING problem, we are given an undirected
graph G and a positive integer k, and the objective is to test whether G has k pairwise
edge disjoint cycles. Obtain a polynomial kernel for Epge DissoinTt CycLE PaAckING
(parameterized by k).

2.18 (&). A bisection of a graph G with an even number of vertices is a partition of V(G)
into V7 and V3 such that |Vi| = |Va|. The size of (V1, V2) is the number of edges with one
endpoint in V7 and the other in V5. In the MaxiMmuM BISECTION problem, we are given
an undirected graph G with an even number of vertices and a positive integer k, and the
objective is to test whether there exists a bisection of size at least k.

1. Show that every graph with m edges has a bisection of size at least [7]. Use this to
show that MaxmmuMm BisecTion admits a kernel with 2k edges.

2. Consider the following “above guarantee" variant of Maximum BisecTioN, where we
are given an undirected graph G and a positive integer k, but the objective is to test
whether there exists a bisection of size at least [ %] +k. Show that the problem admits
a kernel with O(k?) vertices and O(k?) edges.

2.19 (£2). Byteland, a country of area exactly n square miles, has been divided by the
government into n regions, each of area exactly one square mile. Meanwhile, the army of
Byteland divided its area into n military zones, each of area again exactly one square mile.
Show that one can build n airports in Byteland, such that each region and each military
zone contains one airport.

2.20. A magician and his assistant are performing the following magic trick. A volunteer
from the audience picks five cards from a standard deck of 52 cards and then passes the
deck to the assistant. The assistant shows to the magician, one by one in some order, four
cards from the chosen set of five cards. Then, the magician guesses the remaining fifth
card. Show that this magic trick can be performed without any help of magic.
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2.21. Prove the second claim of Theorem 2.131

2.22. In the DuaL-CoLORING problem, we are given an undirected graph G on n vertices
and a positive integer k, and the objective is to test whether there exists a proper coloring
of G with at most n — k colors. Obtain a kernel with O(k) vertices for this problem using
crown decomposition.

2.23 (;‘;) In the MAX-INTERNAL SPANNING TREE problem, we are given an undirected
graph G and a positive integer k, and the objective is to test whether there exists a spanning
tree with at least k internal vertices. Obtain a kernel with O(k) vertices for MAX-INTERNAL
SPANNING TREE.

2.24 (£&). Let G be an undirected graph, let (z4),ecv(g) be any feasible solution to
LPVC(G), and let M be a matching in G. Prove that |M| < ZvEV(G) Ty.

2.25 (&). Let G be a graph and let (zv)vev(q) be an optimum solution to LPVC(G)
(not necessarily a half-integral one). Define a vector (Yo)vev(a) as follows:

if ¢, <
if ¢, =
if Ty >

Yo =

= ole O
M NIER IR

Show that (yv),ev () is also an optimum solution to LPVC(G).

2.26 (&). In the MIn-ONEs-2-SAT, we are given a CNF formula, where every clause has
exactly two literals, and an integer k, and the goal is to check if there exists a satisfying
assignment of the input formula with at most k variables set to true. Show a kernel for
this problem with at most 2k variables.

2.27 (£7). Consider a restriction of d-HirTing SET, called Ed-HiTTING SET, where we
require every set in the input family A to be of size exactly d. Show that this problem
is not easier than the original d-HitrTiNG SET problem, by showing how to transform a
d-HiTTING SET instance into an equivalent Ed-HiTTing SET instance without changing
the number of sets.

2.28. Show a kernel with at most f(d)k? sets (for some computable function f) for the
Ed-HitTiNG SET problem, defined in the previous exercise.

2.29. In the d-SeT PACKING problem, we are given a family A of sets over a universe
U, where each set in the family has cardinality at most d, and a positive integer k. The
objective is to decide whether there are sets Si,...,Sr € A that are pairwise disjoint.
Use the sunflower lemma to obtain a kernel for d-SET PackiNG with f(d)k? sets, for some
computable function d.

2.30. Consider a restriction of d-SET PackiNng, called Ed-SET PACKING, where we require
every set in the input family A to be of size exactly d. Show that this problem is not easier
than the original d-SET PAckING problem, by showing how to transform a d-SET Packing
instance into an equivalent Ed-SET Packing instance without changing the number of sets.

2.31. A split graph is a graph in which the vertices can be partitioned into a clique and
an independent set. In the VERTEX DisjoiNnT PaTus problem, we are given an undirected
graph G and k pairs of vertices (s;,t;),¢ € {1,...,k}, and the objective is to decide whether
there exists paths P; joining s; to t; such that these paths are pairwise vertex disjoint.
Show that VERTEX DisjoINT ParHs admits a polynomial kernel on split graphs (when
parameterized by k).
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2.32. Consider now the VERTEX DisjoiNT PaTHS problem, defined in the previous exercise,
restricted, for a fixed integer d > 3, to a class of graphs that does not contain a d-vertex
path as an induced subgraph. Show that in this class the VErRTEX DissoINT PaTHS problem
admits a kernel with O(k?~1) vertices and edges.

2.33. In the CLusTER VERTEX DELETION problem, we are given as input a graph G and
a positive integer k, and the objective is to check whether there exists a set S C V(G) of
size at most k such that G — S is a cluster graph. Show a kernel for CLUSTER VERTEX
DEeLETION with O(k3) vertices.

2.34. An undirected graph G is called perfect if for every induced subgraph H of G, the
size of the largest clique in H is same as the chromatic number of H. In the Opp CvycLE
TRANSVERSAL problem, we are given an undirected graph G and a positive integer k,
and the objective is to find at most k vertices whose removal makes the resulting graph
bipartite. Obtain a kernel with O(k2) vertices for Opp CvcLE TRANSVERSAL on perfect
graphs.

2.35. In the SpLiT VERTEX DELETION problem, we are given an undirected graph G and
a positive integer k and the objective is to test whether there exists a set S C V(G) of size
at most k such that G — S is a split graph (see Exercise for the definition).

1. Show that a graph is split if and only if it has no induced subgraph isomorphic to
one of the following three graphs: a cycle on four or five vertices, or a pair of disjoint
edges.

2. Give a kernel with O(k®) vertices for SPLIT VERTEX DELETION.

2.36 (;';) In the SpLiT EpGE DELETION problem, we are given an undirected graph G
and a positive integer k, and the objective is to test whether G can be transformed into
a split graph by deleting at most k edges. Obtain a polynomial kernel for this problem
(parameterized by k).

2.37 (;';) In the RaMsEY problem, we are given as input a graph G and an integer k, and
the objective is to test whether there exists in G an independent set or a clique of size at
least k. Show that Ramsey is FPT.

2.38 (&). A directed graph D is called oriented if there is no directed cycle of length at
most 2. Show that the problem of testing whether an oriented digraph contains an induced
directed acyclic subgraph on at least k vertices is FPT.

Hints

Consider the following reduction rule: if there exists a line that contains more than &
input points, delete the points on this line and decrease k by 1.

Consider the following natural reduction rules:

1. delete a vertex that is not a part of any P3 (induced path on three vertices);
2. if an edge wv is contained in at least k + 1 different Pss, then delete uv;
3. if a non-edge uw is contained in at least k + 1 different Pss, then add ww.

Show that, after exhaustive application of these rules, a yes-instance has O(k2) vertices.

First, observe that one can discard any set in F that is of size at most 1. Second,
observe that if every set in F is of size at least 2, then a random coloring of U has at least
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|F|/2 nonmonochromatic sets on average, and an instance with |F| > 2k is a yes-instance.
Moreover, observe that if we are dealing with a yes-instance and F' € F is of size at least
2k, then we can always tweak the solution coloring to color F' nonmonochromatically: fix
two differently colored vertices for k — 1 nonmonochromatic sets in the solution, and color
some two uncolored vertices of F' with different colors. Use this observation to design a
reduction rule that handles large sets in F.

Observe that the endpoints of the matching in question form a vertex cover of the
input graph. In particular, every vertex of degree larger than 2k needs to be an endpoint
of a solution matching. Let X be the set of these large-degree vertices. Argue, similarly as
in the case of O(k?) kernel for VErTEX COVER, that in a yes-instance, G\ X has only few
edges. Design a reduction rule to reduce the number of isolated vertices of G \ X.

Proceed similarly as in the O(k?) kernel for VERTEX COVER.

Proceed similarly as in the case of VERTEX CoVER. Argue that the vertices of degree
larger than d 4+ k need to be included in the solution. Moreover, observe that you may
delete isolated vertices, as well as edges connecting two vertices of degree at most d. Argue
that, if no rule is applicable, then a yes-instance is of size bounded polynomially in d + k.

The important observation is that a matching of size k is a good subgraph. Hence,
we may restrict ourselves to the case where we are additionally given a vertex cover X of
the input graph of size at most 2k. Moreover, assume that X is inclusion-wise minimal. To
conclude, prove that, if a vertex v € X has at least k neighbors in V(G) \ X, then (G, k)
is a yes-instance.

The main observation is that, since there is no 3-cycle nor 4-cycle in the graph, if
z,y € N(v), then only v can dominate both = and y at once. In particular, every vertex of
degree larger than k needs to be included in the solution.

However, you cannot easily delete such a vertex. Instead, mark it as “obligatory” and
mark its neighbors as “dominated”. Note now that you can delete a “dominated” vertex,
as long as it has no unmarked neighbor and its deletion does not drop the degree of an
“obligatory” vertex to k.

Prove that, in a yes-instance, if no rule is applicable, then the size is bounded polyno-
mially in k. To this end, show that

1. any vertex can dominate at most k unmarked vertices, and, consequently, there are
at most k2 unmarked vertices;

2. there are at most k “obligatory” vertices;

3. every remaining “dominated” vertex can be charged to one unmarked or obligatory
vertex in a manner that each unmarked or obligatory vertex is charged at most k + 1
times.

Let (G, k) be a FEEDBACK VERTEX SET instance and assume G is d-regular. If d < 2,
then solve (G, k) in polynomial time. Otherwise, observe that G has dn/2 edges and, if
(G, k) is a yes-instance and X is a feedback vertex set of G of size at most k, then at most
dk edges of G are incident to X and G — X contains less than n — k edges (since it is a
forest). Consequently, dn/2 < dk + n — k, which gives n = O(k) for d > 3.

Show, using greedy arguments, that if every vertex in a digraph G has indegree at
least d, then G contains d pairwise edge-disjoint cycles.

For the vertex-deletion variant, design a simple reduction that boosts up the indegree
of every vertex without actually changing anything in the solution space.

Let X be the set of vertices of G of degree larger than k. Clearly, any connected
vertex cover of G of size at most k needs to contain X. Moreover, as in the case of VERTEX
COVER, in a yes-instance there are only O(k?) edges in G — X. However, we cannot easily
discard the isolated vertices of G — X, as they may be used to make the solution connected.
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To obtain an exponential kernel, note that in a yes-instance, |X| < k, and if we have
two vertices u, v that are isolated in G — X, and Ng(u) = Ng(v) (note that Ng(u) C X
for every u that is isolated in G — X), then we need only one of the vertices u,v in a
ConNECTED VERTEX COVER solution. Hence, in a kernel, we need to keep:

1. G[X], and all edges and non-isolated vertices of G — X;

2. for every x € X, some k + 1 neighbors of z;

3. for every Y C X, one vertex u that is isolated in G — X and Ng(u) = Y (if there
exists any such vertex).

For the last part of the exercise, note that in the presence of this assumption, no two
vertices of X share more than one neighbor and, consequently, there are only O(]X|2) sets
Y C X for which there exist u ¢ X with Ng(u) =Y.

We repeat the argument of the previous exercise, and bound the number of sets
Y C X for which we need to keep a vertex u € V(G) \ X with Ng(u) = Y. First, there
are O(d|X|?~1) sets Y of size smaller than d. Second, charge every set Y of size at least d
to one of its subset of size d. Since G does not contain Ky 4 as a subgraph, every subset X

of size d is charged less than d times. Consequently, there are at most (d —1) ('ij‘) vertices
u € V(GQ) \ X such that Ng(u) C X and |[Ng(u)| > d.

The main observation is as follows: an induced cycle of length ¢ needs exactly £ — 3
edges to become chordal. In particular, if a graph contains an induced cycle of length
larger than k + 3, then the input instance is a no-instance, as we need more than k edges
to triangulate the cycle in question.

First, prove the safeness of the following two reduction rules:

1. Delete any vertex that is not contained in any induced cycle in G.

2. A vertex z is a friend of a non-edge wv, if u, z, v are three consecutive vertices of some
induced cycle in G. If uv ¢ E(G) has more than 2k friends, then add the edge uv and
decrease k by one.

Second, consider the following procedure. Initiate A to be the vertex set of any inclusion-
wise maximal family of pairwise vertex-disjoint induced cycles of length at most 4 in G.
Then, as long as there exists an induced cycle of length at most 4 in G that contains two
consecutive vertices in V(G) \ A, move these two vertices to A. Show, using a charging
argument, that, in a yes-instance, the size of A remains O(k). Conclude that the size of a
reduced yes-instance is bounded polynomially in k.

Design reduction rules that remove vertices of degree at most 2 (you may obtain a
multigraph in the process). Prove that every n-vertex multigraph of minimum degree at
least 3 has a cycle of length O(logn). Use this to show a greedy argument that an n-vertex
multigraph of minimum degree 3 has £2(n®) pairwise edge-disjoint cycles for some ¢ > 0.

Consider the following argument. Let |V (G)| = 2n and pair the vertices of G arbi-
trarily: V(G) = {x1,y1,22,¥2, ..., %n, Yn}. Consider the bisection (Vi,Va2) where, in each
pair (z;,y;), one vertex goes to V4 and the other goes to Va, where the decision is made
uniformly at random and independently of other pairs. Prove that, in expectation, the ob-
tained bisection is of size at least (m + £)/2, where ¢ is the number of pairs (x;,y;) where
zyi € E(G).

Use the arguments in the previous paragraph to show not only the first point of the
exercise, but also that the input instance is a yes-instance if it admits a matching of size
2k. If this is not the case, then let X be the set of endpoints of a maximal matching in Gj
note that | X| < 4k.

First, using a variation of the argument of the first paragraph, prove that, if there exists
x € X that has at least 2k neighbors and at least 2k non-neighbors outside X, then the
input instance is a yes-instance. Second, show that in the absence of such a vertex, all but
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O(k?) vertices of V(G) \ X have exactly the same neighborhood in X, and design a way
to reduce them.

Construct the following bipartite graph: on one side there are regions of Byteland, on
the second side there are military zones, and a region R is adjacent to a zone Z if RNZ # (.
Show that this graph satisfies the condition of Hall’s theorem and, consequently, contains
a perfect matching.

Consider the following bipartite graph: on one side there are all (552) sets of five cards

possibly chosen by the volunteer), and on the other side there are all 52-51-50-49 tuples
of pairwise different four cards (possibly shown by the assistant). A set S is adjacent to a
tuple T if all cards of T" belong to S. Using Hall’s theorem, show that this graph admits a
matching saturating the side with all sets of five cards. This matching induces a strategy
for the assistant and the magician.

We now show a relatively simple explicit strategy, so that you can impress your friends
and perform this trick at some party. In every set of five cards, there are two cards of the
same color, say a and b. Moreover, as there are 13 cards of the same color, the cards a and
b differ by at most 6, that is, a+i = b or b+ = a for some 1 < ¢ < 6, assuming some cyclic
order on the cards of the same color. Without loss of generality, assume a + ¢ = b. The
assistant first shows the card a to the magician. Then, using the remaining three cards, and
some fixed total order on the whole deck of cards, the assistant shows the integer ¢ (there
are 3! = 6 permutations of remaining three cards). Consequently, the magician knows the
card b by knowing its color (the same as the first card show by the assistant) and the value
of the card a and the number 3.

Let M be a maximum matching, which you can find using the Hopcroft-Karp algo-
rithm (the first part of Theorem . If M saturates V7, then we are done. Otherwise,
pick any v € V1 \ V(M) (i.e., a vertex v € V; that is not an endpoint of an edge of M) and
consider all vertices of G that are reachable from v using alternating paths. (A path P is
alternating if every second edge of P belongs to M.) Show that all vertices from V; that
are reachable from v using alternating paths form an inclusion-wise minimal set X with
IN(X)| < |X].

@] Apply the crown lemma to G, the edge complement of G (G has vertex set V(G)
and uwv € E(G) if and only if uv ¢ E(G)) and the parameter k — 1. If it returns a matching
My of size k, then note that one can color the endpoints of each edge of My with the same
color, obtaining a coloring of G with n —k colors. Otherwise, design a way to greedily color

the head and the crown of the obtained crown decomposition.

Your main tool is the following variation of the crown lemma: if V(G) is sufficiently
large, then you can find either a matching of size k + 1, or a crown decomposition V(G) =
CUH UR, such that G[H U C] admits a spanning tree where all vertices of H and |H| —1
vertices of C are of degree at least two. Prove it, and use it for the problem in question.

Observe that for every uv € M we have z, + xz, > 1 and, moreover, all these
inequalities for all edges of M contain different variables. In other words,

3 owe) > Y w@)= Y (wle) Fwe) = S 1= M|,

veV(G) veV (M) vueM vu€EM

Let Vs ={v € V(G) : 0<ay < iland Vi_s={veV(G) : I <z, <1}
For sufficiently small € > 0, consider two operations: first, an operation of adding ¢ to all
variables z, for v € Vs and subtracting e from z,, for v € V;_g4, and second, an operation of
adding € to all variables z, for v € Vj_;s and subtracting e from z, for v € V5. Show that
both these operations lead to feasible solutions to LPVC(G), as long as ¢ is small enough.
Conclude that |Vs| = |Vi_s|, and that both operations lead to other optimal solutions
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to LPVC(G). Finally, observe that, by repeatedly applying the second operation, one can
empty sets V5 and V1_s, and reach the vector (yv)yev(q)-

[2:26] First, design natural reduction rules that enforce the following: for every variable z
in the input formula ¢, there exists a truth assignment satisfying ¢ that sets x to false,
and a truth assignment satisfying ¢ that sets x to true. In other words, whenever a value
of some variable is fixed in any satisfying assignment, fix this value and propagate it in the
formula.

Then, consider the following closure of the formula ¢: for every two-literal clause C that
is satisfied in every truth assignment satisfying ¢, add C to ¢. Note that testing whether
C' is such a clause can be done in polynomial time: force two literals in C' to be false and
check if ¢ remains satisfiable. Moreover, observe that the sets of satisfying assignments for
o and ¢’ are equal.

Let ¢’ be the closure of ¢. Consider the following auxiliary graph H: V (H) is the set of
variables of ¢, and zy € E(H) iff the clause zVy belongs to ¢’. Clearly, if we take any truth
assignment 1 satisfying ¢, then ¢»=1(T) is a vertex cover of H. A somewhat surprising fact
is that a partial converse is true: for every inclusion-wise minimal vertex cover X of H,
the assignment 1 defined as ¢ (z) = T if and only if z € X satisfies ¢’ (equivalently, ¢).
Note that such a claim would solve the exercise: we can apply the LP-based kernelization
algorithm to Verrex CoVER instance (H, k), and translate the reductions it makes back
to the formula .

Below we prove the aforementioned claim in full detail. We encourage you to try to
prove it on your own before reading.

Let X be a minimal vertex cover of H, and let 1 be defined as above. Take any clause
C in ¢’ and consider three cases. If C = z V y, then zy € E(H), and, consequently, either
z or y belongs to X. It follows from the definition of ¢ that (z) = T or ¢¥(y) = T, and
1 satisfies C.

In the second case, C = x V —y. For a contradiction, assume that 1 does not satisfy
C and, consequently, z ¢ X and y € X. Since X is a minimal vertex cover, there exists
z € Ny (y) such that z ¢ X and the clause C’ = y V z belongs to ¢’. If 2 = z, then any
satisfying assignment to ¢’ sets y to true, a contradiction to our first preprocessing step.
Otherwise, the presence of C' and C’ implies that in any assignment v’ satisfying ¢’ we
have ¢/(z) = T or ¢/(2) = T. Thus, z V z is a clause of ¢/, and zz € E(H). However,
neither x nor z belongs to X, a contradiction.

In the last case, C' = —x V —y and, again, we assume that 1 does not satisfy C, that is,
z,y € X. Since X is a minimal vertex cover, there exist s € Ny (x), t € Ng(y) such that
s,t ¢ X. It follows from the definition of H that the clauses C; =z Vsand Cy =y V't
are present in ¢’. If s = ¢, then the clauses C, C; and Cy imply that ¢ is set to true in
any truth assignment satisfying ¢’, a contradiction to our first preprocessing step. If s # ¢,
then observe that the clauses C, C and Cy imply that either s or t is set to true in any
truth assignment satisfying ¢’ and, consequently, s V t is a clause of ¢’ and st € E(H).
However, s,t ¢ X, a contradiction.

If ) € A, then conclude that we are dealing with a no-instance. Otherwise, for every
set X € A of size | X| < d, create d — | X| new elements and add them to X.

There are two ways different ways to solve this exercise. First, you can treat the
input instance as a d-HiTTiING SET instance, proceed as in Section and at the end
apply the solution of Exercise to the obtained kernel, in order to get an Ed-HiTTING
SET instance.

In a second approach, try to find a sunflower with k + 2 sets, instead of k 4+ 1 as in
Section [2.6.1] If a sunflower is found, then discard one of the sets: the remaining k + 1 sets
still ensure that the core needs to be hit in any solution of size at most k.
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Show that in a (dk + 2)-sunflower, one set can be discarded without changing the
answer to the problem.

[2-30] Proceed as in Exercise pad every set X € A with d—|X| newly created elements.

Show that, in a split graph, every path can be shortened to a path on at most
four vertices. Thus, for every 1 < i < k, we have a family F; of vertex sets of possible
paths between s; and t;, and this family is of size O(n*). Interpret the problem as a d-SET
PackinG instance for some constant d and family F = Uf:l Fi. Run the kernelization
algorithm from the previous exercise, and discard all vertices that are not contained in any
set in the obtained kernel.

Show that, in a graph excluding a d-vertex path as an induced subgraph, every
path in a solution can shortened to a path on at most d — 1 vertices. Proceed then as in
Exercise

Let A be a family of all vertex sets of a P3 (induced path on three vertices) in G. In
this manner, CLUSTER VERTExX DELETION becomes a 3-HiTTING SET problem on family
A, as we need to hit all induced Pss in G. Reduce A, but not exactly as in the d-HiTTiNG
SET case: repeatedly find a k + 2 sunflower and delete one of its elements from A. Show
that this reduction is safe for CLUSTER VERTEX DELETION. Moreover, show that, if A’
is the family after the reduction is exhaustively applied, then (G[|JA’], k) is the desired
kernel.

2.34] Use the following observation: a perfect graph is bipartite if and only if it does not
contain a triangle. Thus, the problem reduces to hitting all triangles in the input graph,
which is a 3-HiTTING SET instance.

2.35| Proceed as in the case of CLUSTER VERTEX DELETION: interpret a SPLIT VERTEX
DELETION instance as a 5-HiTTiNGg SET instance.

Let {C4,Cs,2K>} be the set of forbidden induced subgraphs for split graphs. That
is, a graph is a split graph if it contains none of these three graphs as an induced subgraph.

You may need (some of) the following reduction rules. (Note that the safeness of some
of them is not so easy.)

1. The “standard” sunflower-like: if more than k forbidden induced subgraphs share a
single edge (and otherwise are pairwise edge-disjoint), delete the edge in question.

2. The irrelevant vertex rule: if a vertex is not part of any forbidden induced subgraph,
then delete the vertex in question. (Safeness is not obvious here!)

3. If two adjacent edges uwv and ww are contained in more than k induced Cys, then
delete uv and ww, and replace them with edges va and wb, where a and b are new
degree-1 vertices.

4. If two adjacent edges uv and uw are contained in more than k pairwise edge-disjoint
induced Css, then delete uv and uw, and decrease k by 2.

5. If the edges viv2, vovs and v3zvg are contained in more than k induced Css, delete
vov3 and decrease k by 1.

By induction, show that every graph on at least 4F vertices has either a clique or
an independent set on k vertices. Observe that this implies a kernel of exponential size for
the problem.

Show that every tournament on n vertices has a transitive subtournament on O(logn)
vertices. Then, use this fact to show that every oriented directed graph on n vertices has an
induced directed acyclic subgraph on logn vertices. Finally, obtain an exponential kernel
for the considered problem.
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Chapter 3
Bounded search trees

In this chapter we introduce a variant of exhaustive
search, namely the method of bounded search trees.
This is one of the most commonly used tools in the de-
sign of fized-parameter algorithms. We illustrate this
technique with algorithms for two different parameter-
izations of VERTEX COVER, as well as for the prob-
lems (undirected) FEEDBACK VERTEX SET and CLOS-
EST STRING.

Bounded search trees, or simply branching, is one of the simplest and most
commonly used techniques in parameterized complexity that originates in the
general idea of backtracking. The algorithm tries to build a feasible solution to
the problem by making a sequence of decisions on its shape, such as whether
to include some vertex into the solution or not. Whenever considering one
such step, the algorithm investigates many possibilities for the decision, thus
effectively branching into a number of subproblems that are solved one by
one. In this manner the execution of a branching algorithm can be viewed
as a search tree, which is traversed by the algorithm up to the point when a
solution is discovered in one of the leaves. In order to justify the correctness of
a branching algorithm, one needs to argue that in case of a yes-instance some
sequence of decisions captured by the algorithm leads to a feasible solution.
If the total size of the search tree is bounded by a function of the parameter
alone, and every step takes polynomial time, then such a branching algorithm
runs in FPT time. This is indeed the case for many natural backtracking
algorithms.

More precisely, let I be an instance of a minimization problem (such as
VERTEX COVER). We associate a measure p(I) with the instance I, which, in
the case of FPT algorithms, is usually a function of k£ alone. In a branch step
we generate from I simpler instances I, ..., Iy (£ > 2) of the same problem
such that the following hold.

51
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1. Every feasible solution S of I;, i € {1,...,¢}, corresponds to a feasible
solution h;(S) of I. Moreover, the set

{hi(S) : 1 <i</fand S is a feasible solution of IZ-}

contains at least one optimum solution for I. Informally speaking, a
branch step splits problem I into subproblems Ii,...,I;, possibly tak-
ing some (formally justified) greedy decisions.
2. The number ¢ is small, e.g., it is bounded by a function of u(I) alone.
3. Furthermore, for every I;, i € {1,...,¢}, we have that u(I;) < u(I) — ¢
for some constant ¢ > 0. In other words, in every branch we substantially
simplify the instance at hand.

In a branching algorithm, we recursively apply branching steps to instances
I, 15, ..., I, until they become simple or even trivial. Thus, we may see an
execution of the algorithm as a search tree, where each recursive call cor-
responds to a node: the calls on instances Iy, I, ..., I, are children of the
call on instance I. The second and third conditions allow us to bound the
number of nodes in this search tree, assuming that the instances with non-
positive measure are simple. Indeed, the third condition allows us to bound
the depth of the search tree in terms of the measure of the original instance,
while the second condition controls the number of branches below every node.
Because of these properties, search trees of this kind are often called bounded
search trees. A branching algorithm with a cleverly chosen branching step
often offers a drastic improvement over a straightforward exhaustive search.

We now present a typical scheme of applying the idea of bounded search
trees in the design of parameterized algorithms. We first identify, in polyno-
mial time, a small (typically of size that is constant, or bounded by a function
of the parameter) subset S of elements of which at least one must be in some
or every feasible solution of the problem. Then we solve |S| subproblems:
for each element e of S, create one subproblem in which we include e in the
solution, and solve the remaining task with a reduced parameter value. We
also say that we branch on the element of S that belongs to the solution.
Such search trees are analyzed by measuring the drop of the parameter in
each branch. If we ensure that the parameter (or some measure bounded by
a function of the parameter) decreases in each branch by at least a constant
value, then we will be able to bound the depth of the search tree by a function
of the parameter, which results in an FPT algorithm.

It is often convenient to think of branching as of “guessing” the right
branch. That is, whenever performing a branching step, the algorithm guesses
the right part of an (unknown) solution in the graph, by trying all possibili-
ties. What we need to ensure is that there will be a sequence of guesses that
uncovers the whole solution, and that the total time spent on wrong guesses
is not too large.

We apply the idea of bounded search trees to VERTEX COVER in Sec-
tion Section briefly discusses methods of bounding the number of
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nodes of a search tree. In Section we give a branching algorithm for
FEEDBACK VERTEX SET in undirected graphs. Section [3.4] presents an al-
gorithm for a different parameterization of VERTEX COVER and shows how
this algorithm implies algorithms for other parameterized problems such as
ODD CYCLE TRANSVERSAL and ALMOST 2-SAT. Finally, in Section [3.5] we
apply this technique to a non-graph problem, namely CLOSEST STRING.

3.1 VERTEX COVER

As the first example of branching, we use the strategy on VERTEX COVER.
In Chapter (Lemma, we gave a kernelization algorithm which in time
O(n+/m) constructs a kernel on at most 2k vertices. Kernelization can be
easily combined with a brute-force algorithm to solve VERTEX COVER in
time O(ny/m+4*k°M). Indeed, there are at most 22* = 4* subsets of size at
most k in a 2k-vertex graph. Thus, by enumerating all vertex subsets of size at
most k in the kernel and checking whether any of these subsets forms a vertex
cover, we can solve the problem in time O(ny/m + 4*k°(1)). We can easily
obtain a better algorithm by branching. Actually, this algorithm was already
presented in Chapter [I] under the cover of the BAR FIGHT PREVENTION
problem.

Let (G, k) be a VERTEX COVER instance. Our algorithm is based on the
following two simple observations.

e For a vertex v, any vertex cover must contain either v or all of its
neighbors N (v).

e VERTEX COVER becomes trivial (in particular, can be solved opti-
mally in polynomial time) when the maximum degree of a graph is
at most 1.

We now describe our recursive branching algorithm. Given an instance
(G, k), we first find a vertex v € V(G) of maximum degree in G. If v is of
degree 1, then every connected component of G is an isolated vertex or an
edge, and the instance has a trivial solution. Otherwise, [N (v)| > 2 and we
recursively branch on two cases by considering

either v, or N(v) in the vertex cover.

In the branch where v is in the vertex cover, we can delete v and reduce
the parameter by 1. In the second branch, we add N(v) to the vertex cover,
delete N[v] from the graph and decrease k by |N(v)| > 2.

The running time of the algorithm is bounded by
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(the number of nodes in the search tree) x (time taken at each node).

Clearly, the time taken at each node is bounded by n®™). Thus, if 7(k) is the
number of nodes in the search tree, then the total time used by the algorithm
is at most 7(k)n®W.

In fact, in every search tree T that corresponds to a run of a branching
algorithm, every internal node of 7 has at least two children. Thus, if
T has ¢ leaves, then the number of nodes in the search tree is at most
2¢ — 1. Hence, to bound the running time of a branching algorithm, it
is sufficient to bound the number of leaves in the corresponding search
tree.

In our case, the tree T is the search tree of the algorithm when run with
parameter k. Below its root, it has two subtrees: one for the same algorithm
run with parameter k£ — 1, and one recursive call with parameter at most
k — 2. The same pattern occurs deeper in 7. This means that if we define a
function T'(k) using the recursive formula

L (TG-1)+T(-2) ifi>2,
T() = { 1 otherwise,

then the number of leaves of 7 is bounded by T'(k).
Using induction on k, we prove that T'(k) is bounded by 1.6181*. Clearly,
this is true for £ = 0 and k = 1, so let us proceed for k > 2:

T(k)=T(k—1)+T(k—2) < 1.6181" 1 4 1.6181%2
< 1.6181%72(1.6181 + 1) < 1.6181%72(1.6181)% < 1.6181".

This proves that the number of leaves is bounded by 1.6181%. Combined with
kernelization, we arrive at an algorithm solving VERTEX COVER in time
O(ny/m + 1.6181°k°W),

A natural question is how did we know that 1.6181% is a solution to the
above recurrence. Suppose that we are looking for an upper bound on function
T(k) of the form T'(k) < c¢- A, where ¢ > 0, A > 1 are some constants. Clearly,
we can set constant ¢ so that the initial conditions in the definition of T'(k)
are satisfied. Then, we are left with proving, using induction, that this bound
holds for every k. This boils down to proving that

EED LI Lt Sy L (3.1)
since then we will have

Tk)=T(k—-1)+T(k—-2) <c- A1 pe N2 < \E
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Observe that is equivalent to A2 > X + 1, so it makes sense to look
for the lowest possible value of A for which this inequality is satisfied; this is
actually the one for which equality holds. By solving equation A\ = A + 1 for
A > 1, we find that \ = % < 1.6181, so for this value of A the inductive
proof works.

The running time of the above algorithm can be easily improved using the
following argument, whose proof we leave as Exercise [3.1}

Proposition 3.1. VERTEX COVER can be solved optimally in polynomial
time when the mazimum degree of a graph is at most 2.

Thus, we branch only on the vertices of degree at least 3, which immediately
brings us to the following upper bound on the number of leaves in a search

tree: ( ) ( ) ¢
| Tk-1)+T(k-3) itk>3,
T(k) = { 1 otherwise.

Again, an upper bound of the form c¢- A* for the above recursive function can
be obtained by finding the largest root of the polynomial equation A\* = A\2+1.
Using standard mathematical techniques (and/or symbolic algebra packages)
the root is estimated to be at most 1.4656. Combined with kernelization, this
gives us the following theorem.

Theorem 3.2. VERTEX COVER can be solved in time O(n/m-+1.4656Fk° 1)),

Can we apply a similar strategy for graphs of vertex degree at most 37
Well, this becomes more complicated as VERTEX COVER is NP-hard on this
class of graphs. But there are more involved branching strategies, and there
are faster branching algorithms than the one given in Theorem

3.2 How to solve recursive relations

For algorithms based on the bounded search tree technique, we need to bound
the number of nodes in the search tree to obtain an upper bound on the
running time of the algorithm. For this, recurrence relations are used. The
most common case in parameterized branching algorithms is when we use
linear recurrences with constant coefficients. There exists a standard tech-
nique to bound the number of nodes in the search tree for this case. If the
algorithm solves a problem of size n with parameter k& and calls itself re-
cursively on problems with decreased parameters k — di,k —ds, ...,k —dp,
then (di,ds,...,dp) is called the branching vector of this recursion. For ex-
ample, we used a branching vector (1,2) to obtain the first algorithm for
VERTEX COVER in the previous section, and a branching vector (1, 3) for the
second one. For a branching vector (di,ds,...,d,), the upper bound T'(k)
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on the number of leaves in the search tree is given by the following linear
recurrence:

Tk)=T(k—-d)+T(k—do)+---+T(k—dp).

Again, for £ < d, where d = max;—1,,.. pd;, we put the initial condition
T(k) = 1. Assuming that new subproblems with smaller parameters can
be computed in time polynomial in n, the running time of such recursive
algorithm is T'(k) - n®™),

If we now look for an upper bound of the form T'(k) < c¢- A*, then the
inductive step boils down to proving the following inequality:

/\k 2 )\k*dl + )\k*dz N )\k*dp' (32)
Inequality (3.2) can be rewritten as P(\) > 0, where
PA) =X —\dmdh — ydmde o \dmd (3.3)

is the characteristic polynomial of the recurrence for T'(k) (recall d =
max;—12, . pd;). Using standard techniques of calculus it is not hard to show
that if a polynomial P has a form as in , then P has a unique positive
root Ag, and moreover P(A\) < 0 for 0 < A < Mg and P(X\) > 0 for A > XAo.
This means that A\g is the best possible value that can be used in an upper
bound for T'(k). In the bibliographic notes we provide further references to
the relevant literature on solving recursive formulas.

The root Ag is often called the branching number corresponding to the

branching vector (dy,da,...,d,). Hence, the running time of the considered
branching algorithm is bounded by Afn®(). In Table we give branching
numbers corresponding to branching vectors (i, j) for 4,5 € {1,...,6}.
G, 1 2 3 4 5 6

T [2.0000 1.6181 1.4656 1.3803 1.3248 1.2852

2 1.4143 1.3248 1.2721 1.2366 1.2107

3 1.2560 1.2208 1.1939 1.1740

4 1.1893 1.1674 1.1510

5 1.1487 1.1348

6 1.1225

Table 3.1: A table of branching numbers (rounded up)

Two natural questions arise:

e How good is the estimation of T'(k) using the exponent of the correspond-
ing branching number?
e How well does T'(k) estimate the actual size of the search tree?
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The answer to the first question is “it is good”: up to a polynomial factor,
the estimation is tight. The second question is much more difficult, since the
actual way a branching procedure explores the search space may be more
complex than our estimation of its behavior using recursive formulas. If, say,
a branching algorithm uses several ways of branching into subproblems (so-
called branching rules) that correspond to different branching vectors, and/or
is combined with local reduction rules, then so far we do not know how
to estimate the running time better than by using the branching number
corresponding to the worst branching vector. However, the delicate interplay
between different branching rules and reduction rules may lead to a much
smaller tree than what follows from our imprecise estimations.

3.3 FEEDBACK VERTEX SET

For a given graph G and a set X C V(G), we say that X is a feedback vertex
set of G if G—X is an acyclic graph (i.e., a forest). In the FEEDBACK VERTEX
SET problem, we are given an undirected graph G and a nonnegative integer
k, and the objective is to determine whether there exists a feedback vertex
set of size at most k in G. In this section, we give a branching algorithm
solving FEEDBACK VERTEX SET in time k9% . nO1),

It is more convenient for us to consider this problem in the more general
setting of multigraphs, where the input graph G may contain multiple edges
and loops. We note that both a double edge and a loop are cycles. We also
use the convention that a loop at a vertex v contributes 2 to the degree of v.

We start with some simple reduction rules that clean up the graph. At
any point, we use the lowest-numbered applicable rule. We first deal with
the multigraph parts of GG. Observe that any vertex with a loop needs to be
contained in any solution set X.

Reduction FVS.1. If there is a loop at a vertex v, delete v from the graph
and decrease k by 1.

Moreover, notice that the multiplicity of a multiple edge does not influence
the set of feasible solutions to the instance (G, k).

Reduction FVS.2. If there is an edge of multiplicity larger than 2, reduce
its multiplicity to 2.

We now reduce vertices of low degree. Any vertex of degree at most 1 does
not participate in any cycle in G, so it can be deleted.

Reduction FVS.3. If there is a vertex v of degree at most 1, delete v.

Concerning vertices of degree 2, observe that, instead of including into the
solution any such vertex, we may as well include one of its neighbors. This
leads us to the following reduction.
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Reduction FVS.4. If there is a vertex v of degree 2, delete v and connect
its two neighbors by a new edge.

Two remarks are in place. First, a vertex v in Reduction [FVS.4] cannot have
a loop, as otherwise Reduction should be triggered on v instead. This
ensures that the neighbors of v are distinct from v, hence the rule may be ap-
plied and the safeness argument works. Second, it is possible that v is incident
to a double edge: in this case, the reduction rule deletes v and adds a loop
to a sole “double” neighbor of v. Observe that in this case Reduction [FVS.]
will trigger subsequently on this neighbor.

We remark that after exhaustively applying these four reduction rules, the
resulting graph G

(P1) contains no loops,
(P2) has only single and double edges, and
(P3) has minimum vertex degree at least 3.

Moreover, all rules are trivially applicable in polynomial time. From now
on we assume that in the input instance (G, k), graph G satisfies properties
(P1)-(P3).

We remark that for the algorithm in this section, we do not need prop-
erties (P1) and (P2). However, we will need these properties later for the
kernelization algorithm in Section [9.1

Finally, we need to add a rule that stops the algorithm if we already
exceeded our budget.

Reduction FVS.5. If £ < 0, terminate the algorithm and conclude that
(G, k) is a no-instance.

The intuition behind the algorithm we are going to present is as follows.
Observe that if X is a feedback vertex set of G, then G — X is a forest.
However, G — X has at most |[V(G)| — |X| — 1 edges and thus G — X
cannot have “many” vertices of high degree. Thus, if we pick some f(k)
vertices with the highest degrees in the graph, then every solution of
size at most k must contain one of these high-degree vertices. In what
follows we make this intuition work.

Let (v1,v2,...,v,) be a descending ordering of V(G) according to vertex
degrees, i.e., d(v1) > d(ve) > -+ > d(v,). Let Vi, = {v1,...,v3r}. Let us
recall that the minimum vertex degree of G is at least 3. Our algorithm for
FEEDBACK VERTEX SET is based on the following lemma.

Lemma 3.3. Fvery feedback vertex set in G of size at most k contains at
least one vertex of V3.

Proof. To prove this lemma we need the following simple claim.
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Claim 3.4. For every feedback verter set X of G,

Y (d(v) = 1) > |BE(G) — [V (G)| + L.

veX

Proof. Graph F' = G — X is a forest and thus the number of edges in F'is at
most |V (G)| — | X| — 1. Every edge of E(G) \ E(F) is incident to a vertex of
X. Hence

S d(w) + [V(G)] - [X] 1> [EG)],

veEX

J

Targeting a contradiction, let us assume that there is a feedback vertex set
X of size at most k such that X N V3 = 0. By the choice of Vi, for every
v € X, d(v) is at most the minimum of vertex degrees from Vs;. Because
|X| < k, by Claim [3.4] we have that

3k

S 1) 23 (3 (dw) - 1) 2 3-(1BG)| - [V(G)] +1).

i=1 veX

In addition, we have that X C V(G) \ Vs, and hence

D (o) =1) = Y (d(v) = 1) = (|B(G)| = V(G| +1).

>3k veX

Therefore,

Z(d(vi) —1)>4-(E@G)| = V(G) +1).

However, observe that Y., d(v;) = 2|E(G)|: every edge is counted twice,
once for each of its endpoints. Thus we obtain

4-(IE(G@)] - V(@)+1) SZ (vi) = 1) = 2|E(G)| - [V(G)],
which implies that 2|E(G)| < 3|V (G)|. However, this contradicts the fact

that every vertex of G is of degree at least 3. O

We use Lemma[3.3]to obtain the following algorithm for FEEDBACK VER-
TEX SET.

Theorem 3.5. There exists an algorithm for FEEDBACK VERTEX SET run-
ning in time (3k)F - n@M,

Proof. Given an undirected graph G and an integer £ > 0, the algorithm

works as follows. It first applies Reductions [FVS.1] [FVS.2] [FVS.3] [FVS.4]
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and exhaustively. As the result, we either already conclude that we
are dealing with a no-instance, or obtain an equivalent instance (G’, k') such
that G’ has minimum degree at least 3 and k' < k. If G’ is empty, then we
conclude that we are dealing with a yes-instance, as ¥’ > 0 and an empty set
is a feasible solution. Otherwise, let Vi be the set of 3" vertices of G’ with
largest degrees. By Lemma [3.3] every solution X to the FEEDBACK VERTEX
SET instance (G’, k') contains at least one vertex from V3j,. Therefore, we
branch on the choice of one of these vertices, and for every vertex v € V3,
we recursively apply the algorithm to solve the FEEDBACK VERTEX SET
instance (G’ — v, K’ — 1). If one of these branches returns a solution X', then
clearly X’ U {v} is a feedback vertex set of size at most k' for G'. Else, we
return that the given instance is a no-instance.

At every recursive call we decrease the parameter by 1, and thus the height
of the search tree does not exceed k’. At every step we branch in at most 3k’
subproblems. Hence the number of nodes in the search tree does not exceed
(3k")¥" < (3k)*. This concludes the proof. O

3.4 VERTEX COVER ABOVE LP

Recall the integer linear programming formulation of VERTEX COVER and
its relaxation LPVC(G):

min Zvev(G) Ty
subject to x, + x, > 1 for every uv € E(G),
0<z,<1 foreveryveV(Q).

These programs were discussed in Section If the minimum value of
LPVC(G) is vc¢*(@G), then the size of a minimum vertex cover is at least
vc*(G). This leads to the following parameterization of VERTEX COVER,
which we call VERTEX COVER ABOVE LP: Given a graph G and an integer
k, we ask for a vertex cover of G of size at most k, but instead of seeking an
FPT algorithm parameterized by k as for VERTEX COVER, the parameter
now is k — vc*(G). In other words, the goal of this section is to design an
algorithm for VERTEX COVER on an n-vertex graph G with running time
f(k —ve*(@)) - n®M for some computable function f.

The parameterization by k — vc¢*(G) falls into a more general theme of
above guarantee parameterization, where, instead of parameterizing purely
by the solution size k, we look for some (computable in polynomial time)
lower bound ¢ for the solution size, and use a more refined parameter k& — ¢,
the excess above the lower bound. Such a parameterization makes perfect
sense in problems where the solution size is often quite large and, conse-
quently, FPT algorithms in parameterization by k& may not be very efficient.
In the VERTEX COVER problem, the result of Section [2.5]— a kernel with at
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most 2k vertices — can be on one hand seen as a very good result, but on
the other hand can be an evidence that the solution size parameterization for
VERTEX COVER may not be the most meaningful one, as the parameter can
be quite large. A more striking example is the MAXIMUM SATISFIABILITY
problem, studied in Section here an instance with at least 2k clauses is
trivially a yes-instance. In Section [F9.2] we study an above guarantee parame-
terization of a variant of MAXIMUM SATISFIABILITY, namely MAX-Er-SAT.
In Exercise [0.3] we also ask for an FPT algorithm for MAXIMUM SATISFIA-
BILITY parameterized by k — m/2, where m is the number of clauses in the
input formula. The goal of this section is to study the above guarantee pa-
rameterization of VERTEX COVER, where the lower bound is the cost of an
optimum solution to an LP relaxation.

Before we describe the algorithm, we fix some notation. By optimum
solution x = (2v),cy (g to LPVC(G), we mean a feasible solution with
1>z, > 0for all v € V(G) that minimizes the objective function (sometimes
called the cost) w(x) = 3°,cy(q) Zv- By Proposition for any graph G
there exists an optimum half-integral solution of LPVC(G), i.e., a solution
with z, € {0,4,1} for all v € V(G), and such a solution can be found in
polynomial time.

Let ve(G) denote the size of a minimum vertex cover of G. Clearly, ve(G) >
ve*(G). For a half-integral solution x = (24),,cy () and i € {0, 1,1}, we define
V¥={veV : z, =i} Wealso say that x = {z, },ev(c) is all-1-solution if
z, = 3 for every v € V(G). Because the all-1-solution is a feasible solution,
we have that ve*(G) < @ Furthermore, we define the measure of an
instance (G, k) to be our parameter of interest u(G, k) = k — vc¢*(G).

Recall that in Section [2.5] we have developed Reduction for VERTEX
CovER. This reduction, if restricted to half-integral solutions, can be stated
as follows: for an optimum half-integral LPVC(G) solution x, we (a) conclude
that the input instance (G, k) is a no-instance if w(x) > k; and (b) delete
V§&F U VX and decrease k by |V*| otherwise. As we are now dealing with

measure p(G, k) = k — vc*(G), we need to understand how this parameter
changes under Reduction

Lemma 3.6. Assume an instance (G', k') is created from an instance (G, k)
by applying Reduction [VC]] to a half-integral optimum solution x. Then
ve*(G) — ve* (@) = ve(G) — ve(G') = V¥ = k — k. In particular,
WG ) = (G, k).

We remark that, using Exercise [2.25] the statement of Lemma [3.6] is true
for any optimum solution x, not only a half-integral one (see Exercise [3.19).
However, the proof for a half-integral solution is slightly simpler, and, thanks
to Proposition we may work only with half-integral solutions.

Proof (of Lemma . Observe that every edge of G incident to V< has its
second endpoint in V*. Hence, we have the following:
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e For every vertex cover Y of G', Y UV is a vertex cover of G and, conse-
quently, ve(G) < ve(G') + |V

e For every feasible solution y’ to LPVC(G’), if we define a vector y =
(Yo)vev(a) as yo = ¥y, for every v € V(G') and y, = z, for every v €
V(G) \ V(G’), then we obtain a feasible solution to LPVC(G) of cost
w(y’) + |Vi¥|; consequently, v¢*(G) < ve*(G') + |V¥.

Now it suffices to prove the reversed versions of the two inequalities obtained
above. Theorem ensures that ve(G') < ve(G) — |Vi*|. Moreover, since x
restricted to V(G’) is a feasible solution to LPVC(G’) of cost ve*(G) — |V,
we have ve*(G') < ve*(G) — |V O

In Theorem [2.21] we simply solved LPVC(G), and applied Reduction
to obtain a kernel with at most 2k vertices. In this section we would like to do
something slightly stronger: to apply Reduction [VC.4] as long as there exists
some half-integral optimum solution x that is not the all—%—solution. Luckily,
by a simple self-reduction trick, we can always detect such solutions.

Lemma 3.7. Given a graph G, one can in O(mn®/?) time find an optimum
solution to LPVC(G) which is not the all—%-solutz’on, or correctly conclude
that the all—%—solution is the unique optimum solution to LPVC(G). More-
over, the returned optimum solution is half-integral.

Proof. First, use Proposition to solve LPVC(G), obtaining an optimum
half-integral solution x. If x is not the all—%—solution, then return x. Other-
wise, proceed as follows.

For every v € V(G), use Proposition again to solve LPVC(G — v),
obtaining an optimum half-integral solution x". Define a vector x”° as x”, ex-
tended with a value x,, = 1. Note that x”° is a feasible solution to LPVC(G)
of cost w(x"°) = w(x") +1 = v¢*(G — v) + 1. Thus, if for some v € V(G)
we have w(x") = vc¢*(G — v) < ve¢*(G) — 1, then x¥° is an optimum solu-
tion for LPVC(G). Moreover, x"° is half-integral, but is not equal to the
all-2-solution due to the value at vertex v. Hence, we may return x*°.

2
We are left with the case

ve* (G —v) > ve*(G) — 1 for every v € V(G). (3.4)

We claim that in this case the all—%—solution is the unique solution to
LPVC(G); note that such a claim would conclude the proof of the lemma, as
the computation time used so far is bounded by O(mn3/?) (n+1 applications
of Proposition . Observe that, due to Proposition both 2 ve* (G —v)
and 2 vc* (@) are integers and, consequently, we obtain the following strength-

ening of (3.4):
1
ve* (G —v) > ve*(G) — 3 for every v € V(QG). (3.5)

By contradiction, let x be an optimum solution to LPVC(G) that is not
the all-1-solution. As the all-$-solution is an optimum solution to LPVC(G),
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for some v € V(@) we have z, > % However, then x, restricted to G —wv, is a
feasible solution to LPVC(G—v) of cost w(x)—xz, = ve*(G)—z, < vc*(G)—3,

a contradiction to (3.5)). O

Lemma [3.7] allows us to enhance Reduction [VC.4]to the following form.

Reduction VC.5. Invoke the algorithm of Lemma [3.7] and, if an optimum
solution x is returned, then apply Reduction [VC.4]to G and solution x.

If Reduction is not applicable, then we know not only that the all—%—
solution is an optimum solution to LPVC(G), but also that this is the unique
optimum solution. This property is crucial for our branching algorithm, en-
capsulated in the next theorem.

Theorem 3.8. There exists an algorithm solving VERTEX COVER ABOVE
LP in time 4F—ve (&) . nOM),

Proof. Our algorithm for VERTEX COVER ABOVE LP is almost the same as
the branching algorithm described for VERTEX COVER in Section [3.1] After
Reduction [VC.F is applied exhaustively, we pick an arbitrary vertex v in
the graph and branch on it. In other words, in one branch, we add v into
the vertex cover, decrease k by 1, and delete v from the graph, and in the
other branch, we add N(v) into the vertex cover, decrease k by |N(v)|, and
delete N[v] from the graph. The correctness of this algorithm follows from
the safeness of Reduction [VC.5|and the fact that the branching is exhaustive.

Although the algorithm is very similar to the one of Section [3.1], we analyze
our algorithm in a completely different way, using the measure u(G, k) = k —
ve*(G). In Lemma [3.6] we have proved that Reduction does not change
the measure; as Reduction is in fact an application of Reduction [VC.4]
to a specific half-integral solution x, the same holds for Reduction [VC.5
Hence, it remains to analyze how the measure changes in a branching step.

Consider first the case when we pick v to the vertex cover, obtaining an
instance (G, k") = (G—v, k—1). We claim that vc*(G’) > vc*(G)—3. Suppose
that this is not the case. Let x’ be an optimum solution to LPVC(G’). We
have w(x’) < vc¢*(G) — 1 and we can obtain an optimum solution x” to
LPVC(G) by extending x’ with a new variable z, = 1 corresponding to v.
But this contradicts our assumption that the all—%—solution is the unique
optimum solution to LPVC(G). Hence, vc*(G’) > vc*(G) — 4, which implies
that u(G', k') < u(G,k) — %

In the second case, let p = |N(v)|. Recall that here the new instance is
(G',k') = (G — N[v],k — p). We claim that vc*(G’) > ve*(G) — p + 3, which
would imply again p(G', k') < u(G, k) — 1. Assume the contrary: let x’ be an
optimum solution to LPVC(G’) and suppose that w(x’) < vc*(G) —p. Define
a feasible solution x” to LPVC(G) by extending x’ with z, =0 and z,, = 1
for every u € N(v). Clearly, w(x"”) = w(x’) + p, thus x” is an optimum
solution to LPVC(G), contradicting the assumption that the all—%—solution is
the unique optimum solution.
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We have shown that the preprocessing rule does not increase the measure
(G, k), and that the branching step results in a (1, 1) decrease in u(G, k).
As a result, we obtain recurrence T'(y1) < 27 (p — £ ) for the number of leaves
in the search tree. This recurrence solves to 4# = 45=v¢"(G) and we obtain a

4(k=ve™ (@) . O _time algorithm for VERTEX COVER ABOVE LP. O

Let us now consider a different lower bound on the size of a minimum
vertex cover in a graph, namely the size of a maximum matching. Observe
that, if graph G contains a matching M, then for k < |M]| the instance
(G, k) is a trivial no-instance of VERTEX COVER. Thus, for a graph G with
a large maximum matching (e.g., when G has a perfect matching) the FPT
algorithm for VERTEX COVER of Section [3.1]is not practical, as in this case
k has to be quite large.

This leads to a second above guarantee variant of the VERTEX COVER
problem, namely the VERTEX COVER ABOVE M ATCHING problem. On input,
we are given an undirected graph G, a maximum matching M and a positive
integer k. As in VERTEX COVER, the objective is to decide whether G has
a vertex cover of size at most k; however, now the parameter is k — |M]|.
By the weak duality of linear programs, it follows that vc¢*(G) > | M| (see
Exercise and the corresponding hint for a self-contained argument) and
thus we have that k — v¢*(G) < k — |M|. Consequently, any parameterized
algorithm for VERTEX COVER ABOVE LP is also a parameterized algorithm
for VERTEX COVER ABOVE MATCHING, and Theorem [3:§]yields the following
interesting observation.

Theorem 3.9. VERTEX COVER ABOVE MATCHING can be solved in time
g4k—IM|  ,0(1)

The VERTEX COVER ABOVE MATCHING problem has been at the center
of many developments in parameterized algorithms. The reason is that faster
algorithms for this problem also yield faster algorithms for a host of other
problems. Just to show its importance, we design algorithms for Opp Cy-
CLE TRANSVERSAL and ALMOST 2-SAT by making use of the algorithm for
VERTEX COVER ABOVE MATCHING.

A subset X C V(G) is called an odd cycle transversal of G it G — X is a
bipartite graph. In Obb CYCLE TRANSVERSAL, we are given an undirected
graph G with a positive integer k, and the goal is to determine whether G
has an odd cycle transversal of size at most k.

For a given graph G, we define a new graph G as follows. Let V; = {u;

u € V(G)} for i € {1,2}. The vertex set V(G) consists of two copies of V(G),

ie. V(G) =V, UV;, and
E(G) = {ujuy : ue V(G)}U{uw; : w e E(G),ie{1,2}}.

In other words, G is obtained by taking two disjoint copies of G and by adding
a perfect matching such that the endpoints of every matching edge are the
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copies of the same vertex. In particular, M = {ujus : u € V(G)} is a perfect
matching in G and |M| = n. The graph G has some interesting properties
which are useful for designing an algorithm for ODD CYCLE TRANSVERSAL.

Lemma 3.10. Let G be a graph on n vertices. Then G has an odd cycle
transversal of size at most k if and only if G has a vertex cover of size at
most n + k.

Proof. Let X be an odd cycle transversal of size at most k in G, and let (A, B)
be a bipartition of G — X. For i € {1,2}, let A;, B; and X; be the copies of
A, B and X in Vj, respectively. Observe that A; U By is an independent set
in G and thus Ay U By U X UXs is a vertex cover of G. However,

(|Ag| + |B1|) + | X1 | + | X2 < (n—k)+k+k<n+k.

This completes the forward direction of the proof.

In the other direction, let Y be a vertex cover of G of size at most n + k.
Then I = V(G) \'Y is an independent set of G of size at least n — k. Let
A=1n V1 and B=1InN V5. Let A and B denote the vertices corresponding
to A and B in V(G), respectively. Since AU B is independent, we have that
AN B = 0. Therefore, AU B is of size at least n — k. Moreover, G[A U B] is
bipartite, as G[A] and G[B] are independent sets. Thus, V(G)\ (AU B) is an
odd cycle transversal of size at most k for G. This completes the proof. O

Using Lemma [3.10] and Theorem [3.9] we get the following result for OpD
CycLE TRANSVERSAL

Theorem 3.11. ODD CYCLE TRANSVERSAL can be solved in time 4¥n©®)

Proof. Given an input (G,k) to ObD CYCLE TRANSVERSAL, we first con-
struct the graph G. Let M = {uruz : u € V(G)} be a perfect matching of
G. Now we apply Theorem [3.9| to the instance (G, M,n+ k) to check in time
gntk—n pOQ) — g4k. 01 whether G has a vertex cover of size at most n+k,
where n = |V(G)| If a vertex cover of size at most n + k in G is found, then
using Lemma [3.10| we obtain an odd cycle transversal of size at most & in G.
Otherwise, by Lemma [3.10] G has no odd cycle transversal of size at most
k. O

In fact, the fastest currently known FPT algorithm for Opp CYCLE
TRANSVERSAL [328], [373] uses an improved version of the algorithm described
in Theorem as a subroutine. We will give a 3*n®(M)-time algorithm for
this problem in the next chapter using a different technique, called iterative
compression.

Next, we give an algorithm for ALMOST 2-SAT using the 4¥n°(M_time
algorithm for VERTEX COVER ABOVE MATCHING. In the ALMOST 2-SAT
problem, we are given a 2-CNF formula ¢ and an integer k, and the question
is whether one can delete at most k clauses from ¢ to make it satisfiable.
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In a variable-deletion variant, called VARIABLE DELETION ALMOST 2-SAT,
we instead allow deleting at most k variables; a variable is deleted together
with all clauses containing it. (One can think of deleting a variable as setting
it both to true and false at the same time, in this way satisfying all the
clauses containing it.) Exercises and ask you to prove that these
two variants are equivalent, and an f(k)n®1)-time algorithm for one of them
implies an f(k)n®M-time algorithm for the other one (with the same function
f). Hence, it suffices to focus only on the variable-deletion variant.

Theorem 3.12. VARIABLE DELETION ALMOST 2-SAT can be solved in
4kpO0M) time,

Proof. We proceed similarly as in the case of ODD CYCLE TRANSVERSAL: in
polynomial time, we construct a VERTEX COVER ABOVE M ATCHING instance
(G, M, |M|+k) that is equivalent to the input VARIABLE DELETION ALMOST
2-SAT instance (p, k). Then the theorem follows from an application of the
algorithm of Theorem [3.9|to the instance (G, M, |M| + k).

We construct the graph G as follows. For every variable x, and for every
literal ¢ € {x, —x}, we construct a vertex vy, and connect the vertices v, and
U by an edge. Let M be a set of edges defined in this step; note that M is
a matching in G. The intuitive meaning of vertices v, is that picking v, into
a vertex cover corresponds to valuating the variable of ¢ so that ¢ is true.
For every edge v,v—, € M, we expect to take one endpoint into a vertex
cover, which corresponds to setting the value of variable z. However, in k
edges v,v—, € M we are allowed to take both endpoints into a vertex cover,
corresponding to deleting x or, equivalently, setting x both to true and false
at once.

To encode clauses, we proceed as follows. For every binary clause ¢1 V {5,
we add an edge vy, vy, , so that either vy, or vy, needs to be taken into a vertex
cover. For every unary clause with literal ¢, we add a new vertex of degree 1,
adjacent to vy.

This concludes the construction of the graph G and the instance (G, M, | M|
+k). We refer to Fig. for an illustration of the construction. We claim that
(p, k) is a yes-instance of VARIABLE DELETION ALMOST 2-SAT if and only
if (G, M,|M|+ k) is a yes-instance of VERTEX COVER ABOVE MATCHING.

In one direction, let X be a set of at most k variables of ¢ such that ¢ — X,
the formula ¢ with all variables of X deleted, has a satisfying assignment
1. We define a set Y C V(G) as follows. First, for every x € X, we put
both v, and v—, into Y. Second, for every variable z ¢ X, we put v, into
Y if ¢¥(z) = T and otherwise, if ¢¥)(x) = L, we put v, into Y. Clearly
V] = [M] + X < M|+ k.

It remains to argue that Y is a vertex cover of G. By construction, Y
contains at least one endpoint of every edge in M. For the remaining edges,
consider a clause C. Since X is a feasible solution to (¢, k), there exists a
literal ¢ in C that is either evaluated to true by %, or its variable is deleted
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Fig. 3.1: The graph G for the formula ¢ = (21 V —@2) A (22 V 23) A (m22 V
—x3) A (mx3 V xg) A (—24). The thick edges are the edges of the matching M

(belongs to X). In both cases, vy € Y and the edge corresponding to the
clause C'is covered by Y.

In the other direction, let Y be a vertex cover of G, and assume Y| <
| M| + k. Without loss of generality, we may assume that ¥ C V(M): if, for
some unary clause C' = ¢, the corresponding degree 1 neighbor of v, belongs
to Y, we replace it with the vertex vy. Let X be the set of these variables x
for which both v, and v—, belong to Y. Since Y needs to contain at least one
endpoint of every edge of M, we have | X| < k. Let us define an assignment
1 on the variables outside X as follows: ¢(z) = T if v, € Y, and ¢(z) = L if
-z € Y. We claim that v is a satisfying assignment of ¢ — X; note that such
a statement implies that X is a feasible solution to the VARIABLE DELETION
ALmosT 2-SAT instance (i, k), concluding the proof of the theorem.

To this end, consider a clause C, and assume no variable of C' belongs to
X.If C =¥,V {yis a binary clause, then the edge vy, vy, ensures that either
vy, or vy, belongs to Y, and the corresponding literal is evaluated to true in
the assignment . If C' = /£ is a unary clause, then the corresponding edge
incident to vy, together with the assumption that Y C V(M), implies that
ve € Y and / is evaluated to true by .

Consequently, (¢, k) is a yes-instance to VARIABLE DELETION ALMOST
2-SAT if and only if (G, M,|M| + k) is a yes-instance to VERTEX COVER
ABOVE MATCHING. This concludes the proof of the theorem. a

3.5 CLOSEST STRING

In the last part of this chapter we give yet another example of branching
algorithms, this time for a string problem called CLOSEST STRING. Here,
we are given k strings xi,...,xg, each string over an alphabet X and of
length L, and an integer d. The question is whether there exists a string y of
length L over X' such that dy (y,z;) < dfor alli € {1,...,k}. Here, dy(z,y)
is the Hamming distance between strings = and y, that is, the number of
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positions where x and y differ. We call any such string y a center string. In
this section we consider the parameterization by d, the maximum allowed
distance between the center string and the input strings.

Let x be a string over alphabet Y. We denote the letter on the pth position
of z as z[p]. Thus = z[1]z[2]---z[L] for a string of length L. We say that
string « and y differ on the p-th position if x[p] # y[p|.

Given a set of k strings, each of length L, we can think of these strings
as a k x L character matrix. By columns of the set of strings, we mean the
columns of this matrix. That is, the j-th column is the sequence of letters
x1[j], z2[4], - . ., xx[j]. We call a column bad if it contains at least two different
symbols from alphabet X, and good otherwise. Clearly, if the j-th column is
a good one, then we have an obvious greedy choice for the j-th letter of the
solution: y[j] = z1[j] = z2[j] = ... = xx[j]. Thus, we obtain the following
reduction rule.

Reduction CS.1. Delete all good columns.

It is straightforward to implement Reduction [CS.1]in linear time.
We now observe that we cannot have too many bad columns in a yes-
instance.

Lemma 3.13. For every yes-instance of CLOSEST STRING, the correspond-
ing k X L matrix contains at most kd bad columns.

Proof. Fix a center string y. For every bad column j there exists a string x;(j
such that x;(;)[j] # yl[j]. Since every string z; differs from y on at most d
positions, for every ¢ we have i(j) = ¢ for at most d positions j. Consequently,
there are at most kd bad columns. a

Reduction CS.2. If there are more than kd bad columns, then conclude
that we are dealing with a no-instance.

We now give an intuition behind the algorithm.

Fix a center string y. The idea of our algorithm is to start with one
of the given strings, say z1, as a “candidate string”, denoted by z. As
long as there is a string z;, i € {1,...,k}, such that dg(z;,2) > d+ 1,
then for at least one of the positions p where z and x; differ, we have
that y[p] = z;[p]. Thus we can try recursively d + 1 ways to move
the candidate z string “closer” to y; moving closer here means that we
select a position p on which the candidate string z and z; differ and set
z[p] := z;[p]. As at every step we move closer to y, and at the beginning
z =27 and dg(x1,y) < d, we obtain a bounded number of possibilities.

Let us move to formal details.

Theorem 3.14. CLOSEST STRING can be solved in time O(kL+kd(d+1)%).
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Proof. First, we apply Reductions and Unless we have resolved
the instance already, we are left with k strings x1, xs, ..., xzk, each of length
L < kd. The time spent so far is O(kL), that is, linear in the input size.

Recursively, we solve the following augmented problem: given a candidate
string z and an integer ¢ < d, determine whether there exists a center string
y for the strings x1,za,...,z; with the additional property dp(y,z) < £.
Observe that, to solve CLOSEST STRING on our instance, it suffices to solve
our augmented problem for z = z; and ¢ = d.

Given z and ¢, we first perform the following checks. If z is a center string
itself, then we return z. Otherwise, if £ = 0, then we return that there is no
such center string y. In the remaining case, ¢ > 0 and there exists a string x;
with dg (z;,2) > d. Let P be a set of arbitrary d+1 positions on which z; and
z differ. Observe that for every center string y we have y[p] = x;[p] for at least
one position p € P. Hence, we branch into |P| = d + 1 subcases: for every
p € P, we define z, to be equal z except for position p where z,[p] = x;[p],
and we recursively solve our augmented problem for the pair (z,,¢ — 1). To
show correctness of this branching, observe that if there exists a center string
y with dg(z,y) < ¢, then for a position p € P satisfying x;[p] = y[p] we have
du(zp,y) <du(z,y) —1<0—-1.

Concerning the running time of the algorithm, note that we build a search
tree of depth at most d, and every node of the search tree has at most d + 1
children. Thus, the size of the search tree does not exceed O((d + 1)?%). With
small technical work which we omit here, every step of the algorithm can be
implemented in linear time. This completes the proof. a

Exercises

3.1 (4¥). Prove Proposition [3.1]

3.2 (¢¥). Show that Crique and INDEPENDENT SET, parameterized by the solution size
k, are FPT on r-regular graphs for every fixed integer r. Also show that these problems
are FPT with combined parameters k + .

3.3. Show that any graph has at most 2% inclusion-wise minimal vertex covers of size
at most k. Furthermore, show that given G and k, we can enumerate all inclusion-wise
minimal vertex covers of G of size at most k in time 2kn0(1),

3.4 (). In the CLuster VERTEX DELETION problem, we are given a graph G and
an integer k, and the task is to delete at most k vertices from G to obtain a cluster
graph (a disjoint union of cliques). Obtain a 3*n°(M)_time algorithm for CLusTER VERTEX
DELETION.

3.5 (¢&). In the CrLusTErR EpITING problem, we are given a graph G and an integer k,
and the objective is to check whether we can turn G into a cluster graph (a disjoint union
of cliques) by making at most k edge editions, where each edition is adding or deleting one
edge. Obtain a 3¥n®M_time algorithm for CLusTer Eprring.
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3.6 (). An undirected graph G is called perfect if for every induced subgraph H of G,
the size of the largest clique in H is the same as the chromatic number of H. In this exercise
we consider the Opp CycLE TRANSVERSAL problem, restricted to perfect graphs.

Recall that Exercise asked for a kernel with O(k) vertices for this problem. In this
exercise, we ask for a 3¥n9M)_time branching algorithm.

3.7. Let F be a set of graphs. We say that a graph G is F-free if G does not contain
any induced subgraph isomorphic to a graph in F; in this context the elements of F are
sometimes called forbidden induced subgraphs. For a fixed set F, consider a problem where,
given a graph G and an integer k, we ask to turn G into a F-free graph by:

(vertex deletion)  deleting at most k vertices;

(edge deletion)  deleting at most k edges;

(completion)  adding at most k edges;

(edition)  performing at most k editions, where every edition is adding or deleting one
edge.

Prove that, if F is finite, then for each of the four aforementioned problems there exists
a 20(F)pO(M)_time FPT algorithm. (Note that the constants hidden in the O()-notation
may depend on the set F.)

3.8. In the VErTEX CovER/OCT problem, we are given an undirected graph G, an integer
¢, and an odd cycle transversal Z of size at most k, and the objective is to test whether G
has a vertex cover of size at most £. Show that VeErrEx Cover/OCT admits an algorithm
with running time 2Fn©1),

3.9. In this exercise we consider FPT algorithms for FEEDBACK ARc SET IN TOURNA-
MENTS and FEeEpBACk VERTEX SET IN ToOURNAMENTS. Recall that a tournament is a
directed graph, where every pair of vertices is connected by exactly one directed edge (in
one of the directions).

1. Let G be a digraph that can be made into a tournament by adding at most k > 2
directed edges. Show that if G has a cycle then it has a directed cycle of length at
most 3v/k.

2. Show that FEEDBACK ARC SET IN TOURNAMENTS admits a branching algorithm with
running time (3vk)kn@@),

3. Show that FEEDBACK VERTEX SET IN TOURNAMENTS admits a branching algorithm
with running time 35¥n°1),

4. Observe that, in the FEEDBACK ARC SET IN TOURNAMENTS problem, we can equiv-
alently think of reversing an edge instead of deleting it. Use this observation to show

a branching algorithm for FEEDBACK ARC SET IN TOURNAMENTS with running time
3knOM),

3.10 (£&Z). A bipartite tournament is an orientation of a complete bipartite graph, meaning
its vertex set is a union of two disjoint sets V7 and Va2 and there is exactly one arc between
every pair of vertices v and v such that v € V7 and v € V5.

1. Show that a bipartite tournament has a directed cycle if and only if it has a directed
cycle on four vertices.

2. Show that DirecTED FEEDBACK VERTEX SET and DIRECTED FEEDBACK ARC SET
admit algorithms with running time 4kn©M) on bipartite tournaments.

3.11 (B). A graph is chordal if it does not contain a cycle on at least four vertices as
an induced subgraph. A triangulation of a graph G is a set of edges whose addition turns
G into a chordal graph. In the CHORDAL COMPLETION problem, given a graph G and an
integer k, we ask whether G admits a triangulation of size at most k.
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1. Show that CuorbarL CoMpLETION admits an algorithm with running time k€ (*¥)nO (1),

2. Show that there is a one-to-one correspondence between inclusion-wise minimal tri-
angulations of a cycle with ¢ vertices and binary trees with ¢ — 2 internal nodes.
Using this correspondence show that a cycle on £ vertices has at most 4/~2 minimal
triangulations.

3. Use the previous point to obtain an algorithm with running time 20(k) O for
CHORDAL COMPLETION.

You may use the fact that, given a graph G, one can in polynomial time check if G is
a chordal graph and, if this is not the case, find in G an induced cycle on at least four
vertices.

3.12. In the MIN-ONEs-r-SAT problem, we are given an r-CNF formula ¢ and an integer
k, and the objective is to decide whether there exists a satisfying assignment for ¢ with
at most k variables set to true. Show that MiIN-ONEs-r-SAT admits an algorithm with
running time f(r, k)no(l) for some computable function f.

3.13. In the MIN-2-SAT problem, we are given a 2-CNF formula ¢ and an integer k, and
the objective is to decide whether there exists an assignment for ¢ that satisfies at most k
clauses. Show that Min-2-SAT can be solved in time 28n@1),

3.14. In the MiniMmuMm MaximMaL MATCHING problem, we are given a graph G and an
integer k, and the task is to check if G admits an (inclusion-wise) maximal matching with
at most k edges.

1. Show that if G has a maximal matching of size at most k, then V(M) is a vertex cover
of size at most 2k.

2. Let M be a maximal matching in G and let X C V(M) be a minimal vertex cover
in G. Furthermore, let M; be a maximum matching of G[X] and M2 be a maximum
matching of G[V(G) \ V(M1)]. Show that M; U M2 is a maximal matching in G of
size at most |M|.

3. Obtain a 4*n®M)_time algorithm for MiINIMUM MAXiMAL MATCHING.

3.15 (£). In the Max Lear SpanniNG TREE problem, we are given a connected graph
G and an integer k, and the objective is to test whether there exists a spanning tree of
G with at least k leaves. Obtain an algorithm with running time 4*n©() for Max LEAF
SPANNING TREE.

3.16 (). An out-tree is an oriented tree with only one vertex of indegree zero called
the root. In the DIRECTED MAx LEAF problem, we are given an directed graph G and an
integer k, and the objective is to test whether there exists an out-tree in G with at least k
leaves (vertices of outdegree zero). Show that DiRecTED Max Lear admits an algorithm
with running time 4kn© 1),

3.17. Describe an algorithm running in time O(1.381™) which finds the number of inde-
pendent sets (or, equivalently, vertex covers) in a given n-vertex graph.

3.18. Show that if a graph on n vertices has minimum degree at least 3, then it contains a
cycle of length at most 2[logn]. Use this to design a (logn)®®n®M) _time algorithm for
FEEDBACK VERTEX SET on undirected graphs. Is this an FPT algorithm for FEEDBACK
VERTEX SET?

3.19. Prove that the statement of Lemma is true for any optimum solution x, not
necessarily a half-integral one. (For a not half-integral solution x, we define Vi* = {v €
V(G) : my>3}and VF={v e V(G) : zy < i})
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3.20. A graph G is a split graph if V(G) can be partitioned into sets C and I, such that
C'is a clique and I is an independent set in G. In the SpLIT VERTEX DELETION problem,
given a graph G and an integer k, the task is to check if one can delete at most k vertices
from G to obtain a split graph.

Give a polynomial-time algorithm that, given a SpLiT VERTEX DELETION instance
(G, k), produces an equivalent VERTEX COVER ABOVE MATCHING instance (G', M, |M| +
k). Use this to design a 4*n®M)_time algorithm for SPLIT VERTEX DELETION.

3.21. Show how to, given an ALmost 2-SAT instance (¢, k), compute in polynomial time
an equivalent instance (', k) of VARIABLE DELETION ALMmosT 2-SAT.

3.22. Show the reverse of the previous exercise. That is, show how to, given an instance
(¢, k) of VARIABLE DELETION ALMOST 2-SAT, compute in polynomial time an equivalent
instance (', k) of ALmost 2-SAT.

3.23 (2). For an independent set I in a graph G, the surplus of I is defined as |N(I)|—|1].

1. Show that a graph reduced with respect to Reduction (i.e., this reduction cannot
be further applied) does not admit independent sets with nonpositive surplus.

2. Show how to detect independent sets of surplus 1 in such a graph using the LP
relaxation of VERTEx COVER.

3. Design a reduction rule for VErTEX CoOVER that handles a (given) independent set of
surplus 1. How does the measure u(G, k) = k — vc*(G) behave in your reduction rule?

4. Show that, if a graph does not admit an independent set of surplus at most 1, then
the branching of Theorem has branching vector %, 1), and the algorithm runs in

time 2.6181k—ve™(G),O1)

3.24 (&). Consider the CLoSEST STRING problem, where in the input there are two strings
x; and x; with dg (x4, ;) = 2d. Show that in this case the CLOSEST STRING problem can
be solved in time O(kL + kd4?).

3.25 (B). Consider a generalization of CLosesT STRING where, apart from the strings
Z1,T2,...,Tk, each over alphabet X' and of length L, we are given integers di,dz,...,dg,
and we ask for a center string y of length L such that dg(y,z;) < d; for every 1 < i < k.
Consider the following recursive algorithm for this generalization.

1. First, try if x1 is a center string. If this is the case, then return x1 and finish.

2. Otherwise, if d; = 0, then return that there is no solution.

3. In the remaining case, take any j > 2 such that d(x1,z;) > d;. Let P be the set of
positions on which 1 and x; differ. If |P| > d1 + dj, return that there is no solution.

4. Guess the values y[p] for every p € P, where y is the center string we are looking for,
in such a way that y differs from z; on at most d; positions from P for every 1 <1i < k.

5. For every guess (y[p])pep, define d, =d; — |[{p € P : y[p] # x:[p]}| and let ) be the

string x; with letters on positions of P deleted.
. Observe that 27 = . Discard the string 2, and set d} := min(d}, d}).
7. Recurse on the strings «/ and integers d, for every guess (y[p])pep-

[=3]

Denote d = maxj << d;-

1. Show that in every recursive step it holds that d} < d1/2.
2. Use this fact to show that this algorithms solves the generalization of CLOSEST STRING
in time 2°0(d|2|4(kL)OM),
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Hints

Consider the following branching algorithm: given an instance (G, k), pick an arbitrary
edge uwv € E(G) and branch on two instances (G —u,k —1) and (G — v,k — 1). Stop when
G becomes edgeless or k < 0. Show that in this manner you generate at most 2 leaves
of the search tree, and every minimal vertex cover of G of size at most k appears in some
leaf.

Observe that a graph is a cluster graph if and only if it does not contain a path on
three vertices (P3) as an induced subgraph. As long as there exists a P3 as an induced
subgraph, branch by choosing one of its vertices to delete.

Proceed as in Exercise [3.4] and observe that you can break a Ps in three different
ways.

Observe that the class of perfect graphs is closed under taking induced subgraphs,
and a perfect graph is bipartite if and only if it does not contain a triangle.

Observe that, if F is finite and fixed, then

1. we can in polynomial time verify if a graph G is F-free and, if not, find an induced
subgraph of G that is isomorphic to a member of F;

2. there are only O(1) ways to break such a forbidden induced subgraph in all four
considered problem variants.

3.8| For every v € Z, branch on whether to include v or N(v) into the desired vertex cover.
Observe that the remaining graph is bipartite.

3.9] For the first point, observe that a shortest cycle in a directed graph cannot have any
chord. Moreover, if ¢ is the length of some chordless cycle in D, then there are at least
£(¢ — 3)/2 pairs of nonadjacent vertices in D. To solve the second point, show how to find
such a chordless cycle, and branch choosing which edge to delete from it.

For the third and fourth point, observe that a tournament is acyclic if and only if it
does not contain a directed triangle.

Use again the observation that in the DiRecTED FEEDBACK ARC SET problem you
can alternatively reverse edges instead of deleting them. Thus, the graph remains a bipartite
tournament in the course of the algorithm, and every directed cycle on four vertices can
be broken in exactly four ways in both considered problems.

First, design an algorithm that either verifies that G is a chordal graph, or finds an
induced cycle on at least four vertices in G. Second, observe that such a cycle on more
than k4 3 vertices is a certificate that (G, k) is a no-instance. For the first point, it suffices
to branch choosing one edge to add to the cycle found. For the last point, the branching
should consider all minimal triangulations of the cycle.

Start with an assignment that sets all variables to false. As long as there exists an
unsatisfied clause C, branch on C, in each subcases choosing one positive literal of C' to
be satisfied. In this way, you obtain an r*n®M) _time algorithm.

First, observe that if some variable appears only positively (or negatively), then we
can assign its value in such a way that it does not satisfy any clause. Second, note that
if the aforementioned preprocessing rule is not applicable, then branching on any variable
makes at least one clause satisfied, decreasing the budget k by at least 1.

The first point is straightforward. The fact that M; U My is a maximal matching
follows directly from the fact that Ms is a maximum matching in G — V(M7). For the
cardinality bound, let Mx C M be the set of edges of M that have both endpoints in
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X. Observe that |M| = |[Mx|+ |M\ Mx| = |Mx|+ (|X| —2|Mx|) = |X| — |Mx]|, while
|Mi1| > |[Mx| and [Ms| < |X|—|V(M1)| = |X|—2|M;|. For the last point, use Exercise [3.3]
to enumerate all minimal vertex covers of G of size at most 2k.

Start with the following observation: if G is connected and has a subtree T', rooted
at some vertex r, with at least k leaves, then G has also a spanning tree with at least k
leaves. In our algorithm, we start by guessing a non-leaf vertex r of the tree in question,
and consider all further trees as rooted in r.

At every node of the search tree we have a subtree T of G rooted at node r. Let L(T)
denote the set of leaves of T'. Our objective in this branch is to find a subtree with k leaves
(if it exists) that is a supergraph of T.

First, observe that if there exists a leaf v € L(T') with at least two neighbors in V(G) \
V(T), then we can branch on v. In one subcase, we consider v being an internal vertex of
the tree in question, adding all edges vu for u € N(v) \ V(T') to the tree T. In the second
subcase, we consider v being a leaf vertex of the tree in question, deleting all edges vu for
u € N(v) \ V(T) from the graph G. Show that this branching is correct. Observe that in
every branching step we either fix one vertex to be a leaf, or increase the number of leaves
of T. Hence, this branching leads to at most 22% leaves of the search tree.

We are left with the case when all vertices v € L(T') have at most one neighbor outside
V(T). Prove that in this case a similar branching is still valid: for a vertex v € L(T'), either
proclaim v a leaf, or fix as internal vertices both v and all its descendants, up to the closest
vertex of degree at least three, inclusive.

In the leaves of the search tree we have trees T with |L(T")| > k (where we report that
(G, k) is a yes-instance), or trees T where all the leaves have been fixed as leaves, but still
|L(T)| < k (where we report no solution in this branch).

Adapt the solution of Exercise to the directed case.

Note that there is a bijection between vertex covers and maximal independent sets,
since the complement of a vertex cover is an independent set. Show a counting counterpart
of Proposition and design a branching algorithm where the number of leaves in the
search tree is bounded by the solution of the recurrence T'(n) = T'(n — 1) +T(n —4). Solve
the recurrence by applying the techniques described in Section (use Table [3.1)).

3.18] To prove the desired upper bound on the length of the shortest cycle, consider a
breadth-first search tree of the input graph.

To show that the obtained algorithm is an FPT one, consider two possibilities. If n < k¥,
then logn < klogk and (logn)*® < 20(klogk) - Otherwise, k = O(logn/loglogn) and
(logn)k = 2000gn) = nOM)  Alternatively, you may use the Cauchy-Schwarz inequality
to observe that

2 og log n 2 b -
(logn)k = 2k loglogn < o= tloglog = 9k?/2  g(loglogn)?/2 _ ok*/2  po(1)

Apply Exercise to x, obtaining a half-integral solution y. Observe that Re-
duction behaves the same way when fed with the solution x and with the solution

y.
In short, modify the reduction of Lemma [3.10

For a given a graph G, we define a new graph G as follows. Let V; = {u; : v € V(G)},
i € {1,2}. The vertex set V(G) consists of two copies of V(G), i.e., V(G) = V1 U V3 and

E(G) ={uuz : ue V(@}U{uv1 : uw € E(G)}U{ugvs : w ¢ E(G)}.
In other words, G is obtained by taking a disjoint copy of G and a complement of G, and

adding a perfect matching such that the endpoints of every matching edge are copies of
the same vertex.
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The main idea is to make, for every variable z, a different copy for every appearance
of z in the formula ¢. To create the formula ¢’, we first copy all the clauses of ¢, replacing
every variable x with one of its copies so that no copy is used twice, and then we add
clauses enforcing equality between every pair of copies of the same variable. Show that a
deletion of a clause C in the original instance corresponds to the deletion of one of the
copies of a variable appearing in C' in the new instance.

The main idea is to replace every variable = with its two copies, T and z: =T has
the meaning “Is z true?”, whereas == has the meaning “Is z false?”. We connect them by a
clause ~z T V -z~ to enforce that only one value of z is chosen. Moreover, we replace every
literal = with 2T, and every literal == with x. Argue that in the new instance (¢, k)
of ALmosT 2-SAT there exists a minimum solution that deletes only clauses of the form
—z | V-zt. Observe that deleting such a clause corresponds to setting = to both true and
false at once in the input formula ¢, satisfying all the clauses containing x.

Let I be an independent set in G of surplus a. Define the following vector x =
(Tv)vev(a)y: Tv =0forv eI, xy, =1 for v € N(I) and xy = % for v ¢ N[I]. Observe that

x is a feasible solution to LPVC(G) of cost W + 5. This proves the first point.

Moreover, it also proves the following: if we pick any vertex v and solve LPVC(G) with
an additional constraint z, = 0 (in other words, solve LPVC(G — N[v]) and extend it with
zy = 0 and z,, = 1 for every u € N(v)), obtaining a half-integral solution x, then the set
V5© is an independent set of minimum surplus among all independent sets containing v. In
particular, this gives us a way to detect independent sets with surplus 1, as well as shows
that, if the minimum surplus of an independent set containing v is at least 2, then in a
branch where we exclude v from a vertex cover, the measure u(G, k) drops by at least 1.

It remains to argue about the third point, tackling with a reduction rule. To this end,
prove the following: if Reduction [VC.5|is not applicable, and I is of surplus 1, then there
exists a minimum vertex cover of G that contains the whole I or the whole N(I). Recall
[I| +1 = |N(I)|. If GIN(I)] contains an edge, then we can greedily take N(I) into the
vertex cover. Otherwise, we can replace N[I] with a single vertex incident to N(N[I]) and
decrease k by |I|. A direct check shows that the measure (G, k) does not increase in these
steps.

3.24] Observe that, in this case, for every center string y, y[p] equals x;[p] whenever
z;[p] = x;[p], whereas for every position p with z;[p] # x;[p] we have y[p] = z;[p] or
y[p] = x;[p]. Thus, there are two options for each of 2d positions where z; and x; differ.

3.25| For the first point, consider two cases depending on for how many positions p € P
the character y[p] has been guessed so that y[p] = x;[p]. If there are more than d;/2 such
positions, then z; differs on all of them from y, and we have d} < d1/2. Show that in the
second case, when there are at most di /2 such positions, it holds that d;- < di /2. Use here
the fact that |P| > d;.

For the second point, think of choosing (y[p])pep as a three stage process. First, we
choose an integer 0 < ¢ < dy: y will differ from z; on exactly ¢ positions of P. Second,
we choose the set Q of these ¢ positions; there are (‘?I) < (‘Hedl) possibilities. Third, we
choose y[p] for every p € Q; there are (| X| — 1)¢ possibilities.

Using d; as a measure for the complexity of an instance, and using the first point, we
obtain the following recurrence for time complexity.

dy
() < (17 M) 121 0 TOming — £,d/2)

£=0 ¢
Ld1/2] &
= > (YYMes-otr@m s > (Y as- 0t m@ - o,

=0 £=dy/2]+1
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It remains to use the aforementioned recurrence to prove by induction that

d+d
T(d1)§< e
dy

)2o4 (2] - .

(Constant 6 in the exponent is not optimal; it has been chosen so that the proof goes
smoothly.)
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Chapter 4
Iterative compression

In this chapter we introduce iterative compression, a
simple yet very useful technique for designing fized-
parameter tractable algorithms. Using this technique
we obtain FPT algorithms for FEEDBACK VERTEX
SET IN TOURNAMENTS, FEEDBACK VERTEX SET and
ObpD CycCLE TRANSVERSAL.

In 2004, Reed, Smith and Vetta [397] presented the first fixed-parameter
tractable algorithm for OpD CYCLE TRANSVERSAL, running in time 3¥n®).
This result is important not only because of the significance of the prob-
lem, but also because the proposed approach turned out to be a novel and
generic technique, applicable in many other situations. Based on this new
technique, called nowadays iterative compression, a number of FPT algo-
rithms for several important problems have been obtained. Besides OpD CY-
CLE TRANSVERSAL, examples include DIRECTED FEEDBACK VERTEX SET
and ALMOST 2-SAT.

Typically, iterative compression algorithms are designed for parameterized
minimization problems, where the goal is to find a small set of vertices or
edges of the graph, whose removal makes the graph admit some global prop-
erty. The upper bound on the size of this set is the parameter k. The main
idea is to employ a so-called compression routine. A compression routine is
an algorithm that, given a problem instance and a corresponding solution,
either calculates a smaller solution or proves that the given solution is of the
minimum size. Using a compression routine, one finds an optimal solution
to the problem by iteratively building up the structure of the instance and
compressing intermediate solutions.

The main point of the iterative compression technique is that if the com-
pression routine runs in FPT time, then so does the whole algorithm. The
strength of iterative compression is that it allows us to see the problem from
a different viewpoint: The compression routine has not only the problem

T
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instance as input, but also a solution, which carries valuable structural in-
formation about the instance. Therefore, constructing a compression routine
may be simpler than designing a direct FPT algorithm for the original prob-
lem.

While embedding the compression routine into the iteration framework is
usually straightforward, finding the compression routine itself is not. There-
fore, the art of iterative compression typically lies in the design of the com-
pression routine. In this chapter we design algorithms for FEEDBACK VER-
TEX SET IN TOURNAMENTS, FEEDBACK VERTEX SET and ODD CYCLE
TRANSVERSAL using the method of iterative compression. An important case
of ALMOST 2-SAT is covered in the exercises. This technique will be also ap-
plied in Chapter [7] to solve PLANAR VERTEX DELETION, and in Chapter
for DIRECTED FEEDBACK VERTEX SET.

4.1 Illustration of the basic technique

The technique described in this section is based on the following strategy.

Solution compression: First, apply some simple trick so that you can
assume that a slightly too large solution is available. Then exploit the
structure it imposes on the input graph to construct an optimal solution.

As a simple example of this approach, let us try to apply it to our favourite
example problem VERTEX COVER. The algorithm we are going to obtain now
is much worse than the one obtained in the previous chapter, but it serves well
for the illustration. Assume we are given a VERTEX COVER instance (G, k).
We use the well-known 2-approximation algorithm to obtain an approximate
vertex cover Z. If |Z| > 2k, then we can clearly conclude that (G,k) is a
no-instance, so assume otherwise. We are now going to exploit the structure
that Z imposes on the graph G: Z is small, so we can afford some branching
on Z, while at the same time G — Z is edgeless.

The branching step is as follows: we branch in all possible ways an optimal
solution X can intersect Z. Let Xz C Z be one such guess. We are searching
now for a vertex cover X of size at most k, such that X N Z = X . Let
W = Z\ Xgz. If there is an edge in G[W], then we can clearly conclude
that our guess of X, was wrong. Otherwise, note that any vertex cover X
satisfying X N Z = Xz needs to include Xz U Ng(W). Furthermore, since
G — Z is an independent set, Xz U Ng(W) is actually a vertex cover of G.
Consequently, if for some choice of Xz C Z we have | Xz U Ng(W)| < k,
then we return a solution X := Xz U Ng(W), and otherwise we conclude
that (G, k) is a no-instance. Thus, we obtain an algorithm solving VERTEX
COVER in time 2/41p01) < 4kp,00),
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Let us go back to the point when we have guessed the set Xz and defined
W = Z \ Xz. In the previous paragraph we have in fact argued that the
following D1sJOINT VERTEX COVER problem is polynomial-time solvable:
Does G — Xz contain a vertex cover of size at most k — | X z| that is disjoint
from W7 Note here that W is a vertex cover of G — Xz, giving us a lot of
insight into the structure of G — X 4.

In our example, the final dependency of the running time on % is much
worse than the one obtained by branching algorithms in the previous chapter.
One of the reasons is that we started with a large set Z, of size at most 2k.
Fortunately, there is an easy and very versatile way to obtain a set Z of size
k 4 1. This is exactly the main trick of iterative compression.

As the name suggests, in iterative compression we apply the compression
step iteratively. To exemplify this idea on VERTEX COVER, let us take an
arbitrary ordering (v1,vs,...,v,) of G. For i € {1,...,k}, we denote by G;
the subgraph of GG induced by the first i vertices. For i = k, we can take the
vertex set of GG; as a vertex cover X in G; of size k. We proceed iteratively.
Suppose that for some i > k, we have constructed a vertex cover X; of G;
of size at most k. Then in graph G;i1, set Z;11 := X; U {v;41} is a vertex
cover of size at most k + 1. If actually |Z; 1] < k then we are done: we can
simply put X; 11 = Z;41 and proceed to the next iteration. Otherwise we have
|Ziy1] = k + 1, and we need to compress the too large solution. By applying
the branching algorithm described above, i.e., solving 2/Zi+1l = 25+ 1 instances
of D1sJOINT VERTEX COVER, in time 25110 we can either find a vertex
cover X; 11 of G; of size at most k, or conclude that no such cover exists. If
G; does not admit a vertex of size at most k, then of course neither does G,
and we may terminate the whole iteration and provide a negative answer to
the problem. If X, has been found, however, then we may proceed further
to the graph G;2 and so on. To conclude, observe that G,, = G, so at the
last iteration we obtain a solution for the input VERTEX COVER instance in
time 2FpO),

Combined with other ideas, this simple strategy becomes a powerful tech-
nique which can be used to solve different parameterized problems. Let us
sketch how this method can be applied to a graph problem. The central idea
here is to design an FPT algorithm which for a given (k + 1)-sized solution
for a problem either compresses it to a solution of size at most k or proves
that there is no solution of size at most k. This is known as the compression
step of the algorithm. The method adopted usually is to begin with a sub-
graph that trivially admits a k-sized solution and then expand it iteratively.
In any iteration, we try to find a compressed k-sized solution for the instance
corresponding to the current subgraph. If we find such a solution, then by
adding a vertex or an edge we obtain a solution to the next instance, but
this solution can be too large by 1. To this solution we apply the compres-
sion step. We stop when we either obtain a solution of size at most k for the
entire graph, or if some intermediate instance turns out to be incompressible.
In order to stop in the case when some intermediate instance turns out to
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be incompressible, the problem must have the property that the optimum
solution size in any intermediate instance is at most the optimum solution
size in the whole graph.

4.1.1 A few generic steps

We start with explaining the generic steps of iterative compression that are
common to most of the problems. We focus here on vertex subset problems;
the steps for an edge subset problem are analogous. Suppose that we want
to solve (*)-COMPRESSION, where the wildcard (x) can be replaced by the
name of the problem we are trying to solve. In (*)-COMPRESSION, as input
we are given an instance of the problem (%) with a solution of size k + 1
and a positive integer k. The objective is to either find a solution of size at
most k or conclude that no solution of size at most k exists. For example,
for (x) =FEEDBACK VERTEX SET, we are given a graph G and a feedback
vertex set X of size k + 1. The task is to decide whether G has a feedback
vertex set, of size at most k.

The first observation that holds for all the problems in this section is the
following:

If there exists an algorithm solving (x)-COMPRESSION in time f(k)-n¢,
then there exists an algorithm solving problem () in time O(f(k)-n°*t1).

We already explained how to prove such an observation for VERTEX
CoVER. We will repeat it once again for FEEDBACK VERTEX SET IN TOUR-
NAMENTS and skip the proofs of this observation for FEEDBACK VERTEX
SET and ODD CYCLE TRANSVERSAL.

Now we need to compress a solution Z of size k + 1. In all our examples
we follow the same strategy as we did for VERTEX COVER. That is, for every
i € {0,...,k} and every subset Xz of Z of size i, we solve the following
DI1SJOINT- () problem: Either find a solution X to () in G — Xz such that
|X| <k —1i, where X and W := Z \ X are disjoint, or conclude that this is
impossible. Note that in the disjoint variant we have that |W| =k —i+1, so
again the size of the solution W is one larger than the allowed budget; the
difference now is that taking vertices from W is explicitly forbidden. We use
the following observation, which follows from simple branching.

If there exists an algorithm solving DISJOINT-(#) in time g(k) - n®™),
then there exists an algorithm solving (x)-COMPRESSION in time
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In particular, if g(k) = o, then (*)-COMPRESSION can be solved in
time (1 4+ a)Fn®®,

Thus, the crucial part of the algorithms based on iterative compression lies
in solving the disjoint version of the corresponding problem. We will provide
the detailed proof of the above observation for FEEDBACK VERTEX SET IN
TOURNAMENTS. We will not repeat these arguments for FEEDBACK VERTEX
SET and ODD CYCLE TRANSVERSAL, and explain only algorithms solving
DI1SJOINT- (%) for these problems.

Finally, let us point out that when designing algorithms for the compres-
sion and disjoint versions of a problem, one cannot focus only on the decision
version, where the task is just to determine whether a solution exists. This
is because constructing an actual solution is needed to perform the next step
of the iteration. This issue is almost never a real problem: either the algo-
rithm actually finds the solution on the way, or one can use the standard
method of self-reducibility to query a decision algorithm multiple times in
order to reconstruct the solution. However, the reader should be aware of the
caveat, especially when trying to estimate the precise polynomial factor of
the running time of the algorithm.

4.2 FEEDBACK VERTEX SET IN TOURNAMENTS

In this section we design an FPT algorithm for FEEDBACK VERTEX SET IN
TOURNAMENTS (FVST) using the methodology of iterative compression. In
this problem, the input consists of a tournament 7" and a positive integer k,
and the objective is to decide whether there exists a vertex set X C V(T
of size at most k such that 7' — X is a directed acyclic graph (equivalently,
a transitive tournament). We call the solution X a directed feedback vertex
set. Let us note that FEEDBACK VERTEX SET IN TOURNAMENTS is a special
case of DIRECTED FEEDBACK VERTEX SET, where the input directed graph
is restricted to being a tournament.

In what follows, using the example of FEEDBACK VERTEX SET IN TOUR-
NAMENTS we describe the steps that are common to most of the applications
of iterative compression.

We first define the compression version of the problem, called FEEDBACK
VERTEX SET IN TOURNAMENTS COMPRESSION. In this problem, the input
consists of a tournament T, a directed feedback vertex set Z of T of size
k 4+ 1, and a positive integer k, and the objective is either to find a directed
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feedback vertex set of T of size at most k, or to conclude that no such set
exists.

Suppose we can solve FEEDBACK VERTEX SET IN TOURNAMENTS COM-
PRESSION in time f(k)-n®(M). Given this, we show how to solve the original
problem in f(k)-n®® time. We take an arbitrary ordering (v, v, ...,v,) of
V(T) and for every i € {1,...,n} we define V; = {vy,...,v;} and T; = T[V}].
Notice that

e V. is a directed feedback vertex set of size k of T},.

e If X is a directed feedback vertex set of T;, then X U {v;11} is a directed
feedback vertex set of T; 4.

e If T; does not admit a directed feedback vertex set of size at most k, then
neither does T'.

These three facts together with an f(k) - n°-time algorithm for FEEDBACK
VERTEX SET IN TOURNAMENTS COMPRESSION imply an f(k)-n°t!-time al-
gorithm for FEEDBACK VERTEX SET IN TOURNAMENTS as follows. In tour-
nament T}, set V} is a directed feedback vertex set of size k. Suppose that for
1 > k we have constructed a directed feedback vertex set X; of T; of size at
most k. Then in T;14, set Z;11 := X; U {v;11} is a directed feedback vertex
set of size at most k + 1. If actually |Z;;1| < k, then we may proceed to the
next iteration with X;;1 = Z; 1. Otherwise we have |Z; ;1] = k+ 1. Then in
time f(k) - n® we can either construct a directed feedback vertex set X in
T, 41 of size k, or deduce that (T, k) is a no-instance of FEEDBACK VERTEX
SET IN TOURNAMENTS. By iterating at most n times, we obtain the following
lemma.

Lemma 4.1. The ezistence of an algorithm solving FEEDBACK VERTEX SET
IN TOURNAMENTS COMPRESSION in time f(k) - n® implies that FEEDBACK
VERTEX SET IN TOURNAMENTS can be solved in time O(f(k) - nctt).

In all applications of iterative compression one proves a lemma similar to
Lemma [.1] Hence, the bulk of the work goes into solving the compression
version of the problem. We now discuss how to solve the compression problem
by reducing it to a bounded number of instances of the following disjoint ver-
sion of the problem: DiSJOINT FEEDBACK VERTEX SET IN TOURNAMENTS.
In this problem, the input consists of a tournament 7' together with a di-
rected feedback vertex set W and the objective is either to find a directed
feedback vertex set X C V(T') \ W of size at most k, or to conclude that no
such set exists.

Let Z be a directed feedback vertex set of size k+1 in a tournament 7". To
decide whether T contains a directed feedback vertex set X of size k (i.e., to
solve a FEEDBACK VERTEX SET IN TOURNAMENTS COMPRESSION instance
(G, Z,k)), we do the following. We guess the intersection of X with Z, that
is, we guess the set Xz := X N Z, delete Xz from T and reduce parameter
k by |Xz|. For each guess of Xz, we set W := Z \ Xz and solve DISJOINT
FEEDBACK VERTEX SET IN TOURNAMENTS on the instance (T — Xz, W, k —
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| X z|). If for some guess X 7 we find a directed feedback vertex set X’ of T—X
of size at most k—|X | that is disjoint from W, then we output X := X'UX .
Otherwise, we conclude that the given instance of the compression problem
is a no-instance. The number of all guesses is bounded by Zf:o (kjl) So to
obtain an FPT algorithm for FEEDBACK VERTEX SET IN TOURNAMENTS
COMPRESSION, it is sufficient to solve DISJOINT FEEDBACK VERTEX SET IN

ToOURNAMENTS in FPT time. This leads to the following lemma.

Lemma 4.2. If there exists an algorithm solving DISJOINT FEEDBACK VER-
TEX SET IN TOURNAMENTS in time g(k)-n®®) | then there exists an algorithm
solving FEEDBACK VERTEX SET IN TOURNAMENTS COMPRESSION in time
Zf:o (kjl)g(/ﬁ —4)-n°W), In particular, if g(k) = o for some fized constant
«, then the algorithm runs in time (o + 1)* . n©W),

By Lemmas [{.1] and we have that

Solving FEEDBACK VERTEX SET IN TOURNAMENTS boils down to solv-
ing the disjoint variant of the problem.

There is nothing very particular about FEEDBACK VERTEX SET IN TOUR-
NAMENTS in Lemmaff.2] In many graph modification problems, for which the
corresponding disjoint version can be solved in time g(k)-n®®), one can ob-
tain an algorithm for the original problem by proving a lemma analogous to
Lemma We need only the following two properties: (i) a way to deduce
that if an intermediate instance is a no-instance, then the input instance is
a no-instance as well; and (i) a way to enhance a computed solution X; of
an intermediate instance G; with a new vertex or edge to obtain a slightly
larger solution Z; 1 of the next intermediate instance G;1.

4.2.1 Solving DISJOINT FEEDBACK VERTEX SET IN
TOURNAMENTS in polynomazal time

Our next step is to show that DiSJOINT FEEDBACK VERTEX SET IN TOUR-
NAMENTS can be solved in polynomial time. As we already discussed, to-
gether with Lemmas [I.1] and [£.2] this shows that FEEDBACK VERTEX SET
IN TOURNAMENTS can be solved in time 2¢n°(1),

For our proof we need the following simple facts about tournaments, which
are left as an exercise.

Lemma 4.3. Let T be a tournament. Then

1. T has a directed cycle if and only if T has a directed triangle;
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2. If T is acyclic then it has unique topological ordering. That is, there exists
a unique ordering < of the vertices of T' such that for every directed edge
(u,v), we have u < v (that is, u appears before v in the ordering <).

We now describe the algorithm for the disjoint version of the problem.

Let (T,W,k) be an instance of DISJOINT FEEDBACK VERTEX SET IN
TOURNAMENTS and let A = V(T') \ W. Recall that we have that |W| =
k + 1. Clearly, we can assume that both T[W] and T[4] induce transitive
tournaments, since otherwise (T, W, k) is a no-instance. By Lemma in
order to solve DISJOINT FEEDBACK VERTEX SET IN TOURNAMENTS it is
sufficient to find a set of at most k vertices from A intersecting all the directed
triangles in T'. This observation gives us the following simple reduction.

Reduction FVST.1. If T contains a directed triangle x,y, z with exactly
one vertex from A, say z, then delete z and reduce the parameter by 1. The
new instance is (T'— {z}, W, k — 1).

Reduction[FVST I]simply says that all directed triangles in T" with exactly
one vertex in A can be eliminated by picking the corresponding vertex in A.
Safeness of Reduction [EVST 1l follows from the fact that we are not allowed
to select any vertex from W.

Given an instance (T, W, k), we first apply Reductionexhaustively.
So from now onwards assume that Reduction [FVST 1]is no longer applicable.
Since tournaments T[W] and T[A] are acyclic, by Lemma [4.3| we know that
they both have unique topological orderings. Let the topological orderings of
T[W] and T[A] be denoted by ¢ = (w1, ...,w,) and p, respectively. Suppose
X is a desired solution; then T[W U (A \ X)] is a transitive tournament with
the unique ordering such that when we restrict this ordering to W, we obtain
o, and when we restrict it to A\ X, we get restriction of p to A\ X. Since
the ordering of o is preserved in the ordering of T[W U (A\ X)], our modified
goal now is as follows.

Insert a maximum-sized subset of A into ordering o = (w1, ..., wq).

Every vertex v € A has a “natural position” in o, say p[v], defined as follows.
Since Reduction is no longer applicable, for all v € A, we have that
T[W U {v}] is acyclic and the position of v in o is its position in the unique
topological ordering of T[W U {v}]. Thus, there exists an integer p[v] such
that for ¢ < p[v], there is an arc from w; to v and for all ¢ > p[v] there is an
arc from v to w;. Thus we get that

(v,w;) € BE(T) <= i>p[v]. (4.1)

Observe that p[v] is defined for all v € A, it is unique, and p[v] € {1,...,q+1}.
We now construct an ordering 7 of A as follows: u is before v in 7 if and
only if plu] < p[v] or plu] = p[v] and u is before v in the ordering p. That
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is, in the ordering = we take iteratively the sets {v € A : p[v] = i} for
1=1,2,...,9+ 1 and, within each set, we order the vertices according to p,
the topological order of T[A].

The main observation now is as follows:

1. In the transitive tournament 7" — X, the topological ordering of
T[A\ X] needs to be a restriction of m, because T[W] remains in
T — X and o is the topological ordering of T'[W].

2. On the other hand, the topological ordering of T[A \ X] needs to
be a restriction of p, the topological ordering of T[A].

Consequently, it suffices to search for the longest common subsequence
of 7 and p.

We next prove a lemma which formalizes the intuition suggested above.

Lemma 4.4. Let B C A. Then T[W UB] is acyclic if and only if the vertices
of B form a common subsequence of p and .

Proof. By p|p and 7| we denote restrictions of p and 7 to B, respectively.

For the forward direction, suppose that T'[W U B] is acyclic. We show that
plp = m|p and hence vertices of B form a common subsequence of p and
m. Targeting a contradiction, assume that there exist x,y € B such that x
appears before y in p|p and y appears before z in 7|g. Then (x,y) € E(T),
and ply] < plz]. Moreover, if it was that p[x] = p[y], then the order of z
and y in 7 would be determined by p. Thus we conclude that ply] < p|z].
By (4.1), we have that (y,wpp,)) € E(T) and (wp,),z) € E(T). Because of
the directed edges (z,y), (y,wppy), and (wppy), z), we have that {x,y, wy,}
induces a directed triangle in T[W U B], a contradiction.

Now we show the reverse direction of the proof. Assume that the vertices
of B form a common subsequence of p and 7. In particular, this means that
plp = m|p. To show that T[W U B] is acyclic, by Lemma it is sufficient
to show that T[W U B] contains no directed triangles. Since T[W] and T'[A4]
are acyclic and there are no directed triangles with exactly two vertices in
W (Reduction [FVST.I), it follows that there can only be directed triangles
with exactly two vertices in B. Since p|p = g, for all z,y € B with (z,y) €
E(T), we have that p[z] < p[y]. Then by (4.1), there is no w; € W with
(y,w;) € E(T) and (w;,z) € E(T). Hence there is no directed triangle in
T[W U B], and thus it is acyclic. This completes the proof of the lemma. O

We need the following known fact about the longest common subsequence
problem, whose proof we leave as Exercise

Lemma 4.5. A longest common subsequence of two sequences with p and q
elements can be found in time O(pq).
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We are ready to describe the algorithm now.

Lemma 4.6. DiSJOINT FEEDBACK VERTEX SET IN TOURNAMENTS is solv-
able in polynomial time.

Proof. Let (T, W, k) be an instance of the problem. We use Reduction[FVST 1]
exhaustively. Let R be the set of vertices deleted by Reduction and
let (T", W, k') be the reduced instance.

By Lemma the optimal way to make T’ acyclic by vertex deletions is
exactly the same as that to make sequences p and 7 equal by vertex deletions.
Thus, to find an optimal vertex deletion set, we can find a longest common
subsequence of p and 7, which can be done in polynomial time by Lemma[4.5]
Let B be the vertices of a longest common subsequence of p and 7 and let
X :=RU(V(T")\ B). If | X| > k; then (T, W, k) is a no-instance. Otherwise,
X is the desired directed feedback vertex set of size at most k. a

Lemmas [£.1] and .2 combined with Lemma [£.6] give the following result.

Theorem 4.7. FEEDBACK VERTEX SET IN TOURNAMENTS can be solved in
time 2kn0M)

4.3 FEEDBACK VERTEX SET

In this section we give an algorithm for the FEEDBACK VERTEX SET problem
on undirected graphs using the method of iterative compression. Recall that
X is a feedback vertex set of an undirected graph G if G — X is a forest.
We give only the algorithms for the disjoint version of the problem. As was
discussed in Section the existence of an algorithm with running time
oa*n®W for the disjoint variant problem would yield that FEEDBACK VERTEX
SET is solvable in time (1 4+ a)*n®M).

We start by defining DisJOINT FEEDBACK VERTEX SET. In this problem,
as input we are given an undirected graph G, integer k and a feedback vertex
set W in G of size k 4+ 1. The objective is to find a feedback vertex set
X CV(G)\W of size at most k, or correctly conclude that no such feedback
vertex set exists. We first give an algorithm for D1SJOINT FEEDBACK VERTEX
SET running in time 4*2°() | and then we provide a faster algorithm with
running time ©**n°M | where ¢ = % < 1.6181 denotes the golden ratio.
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4.3.1 First algorithm for DISJOINT FEEDBACK VERTEX
SET

Let (G, W, k) be an instance of DISJOINT FEEDBACK VERTEX SET and let
H = G — W. We first give a few reduction rules that simplify the input
instance.

Reduction FVS*.1. Delete all the vertices of degree at most 1 in G.

Reduction FVS*.2. If there exists a vertex v in H such that G[W U {v}]
contains a cycle, then include v in the solution, delete v and decrease the
parameter by 1. That is, the new instance is (G — {v}, W,k — 1).

Reduction FVS*.3. If there is a vertex v € V(H) of degree 2 in G such
that at least one neighbor of v in G is from V(H), then delete this vertex
and make its neighbors adjacent (even if they were adjacent before; the graph
could become a multigraph now).

It is easy to see that Reductions [FVS*.1] [FVS*.2] and [FVS™.J] are safe

and that they produce an equivalent instance. Furthermore, all of them can
be applied in polynomial time. Now we are ready to state the main lemma
of this section.

Lemma 4.8. DISJOINT FEEDBACK VERTEX SET is solvable in time 4¥n©M)

Proof. We give only an algorithm for the decision variant of the problem, i.e.,
we only verify whether a solution exists or not. It is straightforward to modify
the algorithm so that it actually finds a solution, provided there exists one.

We will follow a branching strategy with a nontrivial measure function.
Let (G, W, k) be the input instance. If G[W] is not a forest then return that
(G,W, k) is a no-instance. So from now onwards we assume that G[W] is
indeed a forest. The algorithm first applies Reductions[FVS*.1] [FVS*.2] and
exhaustively. For clarity we denote the reduced instance (the one on
which Reductions [FVS*.1 [FVS*.2|and [FVS*.3| do not apply) by (G, W, k).
If k <0, then return that (G, W, k) is a no-instance.

From now onwards we assume that k& > 0. Recall that H is a forest as W is
a feedback vertex set. Thus H has a vertex z of degree at most 1. Furthermore,
x has at least two neighbors in W, otherwise Reduction [FVS*.1] or [FVS*.3]
would have been applied. Since Reduction [FVS*.2]cannot be applied, we have
that no two neighbors of « belong to the same connected component of G[W].
Now branch by including « in the solution in one branch and excluding it in
the other branch. That is, we call the algorithm on instances (G—{xz}, W, k—1)
and (G,W U {z},k). If one of these branches returns a solution, then we
conclude that (G, W, k) is a yes-instance, otherwise (G, W, k) is a no-instance.
The correctness of this algorithm follows from the safeness of our reductions
and the fact that the branching is exhaustive.
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To estimate the running time of the algorithm, for instance I = (G, W, k),
we define its measure

u(l) =k +~(I),

where «(I) is the number of connected components of G[W]. Observe that
Reductions [FVS*.1] [FVS*.2] and [FVS*.3| do not increase the measure. How
does u(I) change when we branch? When we include = in the solution, k
decreases by 1 and ~(I) remains the same, and thus p(I) decreases by 1. In
the other branch, k& remains the same, while x has neighbors in at least two
connected components of W. Hence, when we include z in W, v(I) drops
by at least 1. Thus, we have a branching vector (1,1) and the running time
of our branching algorithm is 2#(1)p®()_ Since at the beginning we have
u(I) < k+|W| <2k + 1, we obtain the desired running time. O

Similarly to Lemmas and (see also the discussion in Section ,
one can use iterative compression to show that the o*n®M-time algorithm for
Di1sJOINT FEEDBACK VERTEX SET can be used to solve FEEDBACK VERTEX
SET in time (1 + a)*n®™). Hence, Lemma implies the following theorem.

Theorem 4.9. FEEDBACK VERTEX SET can be solved in time 5¥n®(1).

*4.3.2 Faster algorithm for DISJOINT FEEDBACK VERTEX
SET

Now we show how to modify the algorithm of Theorem [.9]to obtain “almost”
the fastest known deterministic algorithm for FEEDBACK VERTEX SET.

We start with a few definitions. Let (G, W, k) be an instance of DISJOINT
FEEDBACK VERTEX SET and H = G—W. A vertex v € V(H) is called a tent
if its degree in G is 3 and all its neighbors are in W. In other words, v has
degree 3 in G and it is an isolated vertex in H. We call a vertex v € V(H)
nice if its degree in G is 2 and both its neighbors are in W. The following
lemma explains why we are interested in nice vertices and tents.

Lemma 4.10. Let (G, W, k) be an instance of DISJOINT FEEDBACK VERTEX
SET such that every vertex from V (H) is either nice or a tent. Then DISJOINT
FEEDBACK VERTEX SET on (G, W, k) can be solved in polynomial time.

The proof of Lemma is based on a polynomial-time algorithm for the
“matroid parity” problem for graphic matroids. We defer the proof of this
Lemma, to Section [[2.2.2] and here we use it as a black box to obtain the
desired algorithm for FEEDBACK VERTEX SET.

For the new algorithm we also need one more reduction rule apart from

Reductions [FVS*.1] [FVS*.2| and [FVS*.3]

Reduction FVS*.4. Let v € V(H) be a vertex of degree 3 in G, with one
neighbor w in V(H) and two neighbors in W. In particular, v is a leaf in H.
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14 H w’ H

Fig. 4.1: Reduction [FVS*.4

Subdivide the edge vu and move the newly introduced vertex, say w, to W.
Let the new graph be named G’ and W' = W U {w}. The new instance is
(G', W' k). See Fig.

The safeness of Reduction [FVS*.4] follows from the fact that introducing
an undeletable degree-2 vertex in the middle of an edge does not change the
set of feasible solutions to DISJIOINT FEEDBACK VERTEX SET. Let us also
observe that even though Reduction [FVS*.4]increases the number of vertices,
it also increases the number of tents. Furthermore, as we never add vertices
to H, this rule can be applied at most |V (H)]| times.

Next we define the new measure which is used to estimate the running
time of the new algorithm for DiSJOINT FEEDBACK VERTEX SET. With an
instance I = (G, W, k), we associate the measure

p(l) =k +~(I) —7(I).

Here, v(I) denotes the number of connected components of G[W] and 7(I)
denotes the number of tents in G.
Next we show that our reduction rules do not increase the measure.

Lemma 4.11. An application of any of the Reductions [FVS .1, [FVS.3,
FVS .3 and[FVS* ]| does not increase u(I).

Proof. The proofs for Reductions [FVS*.1], [FVS*.2| and [FVS~.3| are straight-
forward. As for Reduction let I = (G, W, k) be the considered in-
stance. We add vertex w to W thus creating a new connected component and
increasing v by 1. We also create at least one tent at the vertex v (the vertex
u may also become a tent), see Fig. Thus we increase 7 by at least 1.
Thus, for the new instance I’ we have that p(I') < u(I). O

The important thing we have to keep in mind is that:

For a branching algorithm it is necessary that in all instances whose
measure is nonpositive, it should be possible to solve the problem in
polynomial time.
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So let us now verify that this is the case for DiSJOINT FEEDBACK VERTEX
SET. The next lemma implies that if for an instance I we have 7(I) > k+~(I),
that is, if the measure of I is nonpositive, then I is a no-instance. In fact, we
prove a slightly stronger statement.

Lemma 4.12. Let I = (G,W,k) be an instance of DISJIOINT FEEDBACK
VERTEX SET. If 7(I) > k + @, then I is a no-instance.

Proof. Suppose, for contradiction, that I is a yes-instance of the problem
and let X be a feedback vertex set of size at most k disjoint from W. Thus
G' = G — X is a forest. Let T C V(G) \ W be the set of tents in G. Now
consider G'[W U (T \ X)]. Clearly, G'[W U (T'\ X)] is also a forest. Now in
G'[WU(T\ X)] we contract each connected component of G[W] into a single
vertex and obtain a forest, say . Then F has at most v(I)+|T"\ X| vertices,
and hence has at most v(I)+ |7\ X|—1 edges. However, the vertices of T\ X
form an independent set in F' (as they are tents), and each of them is of
degree exactly three in F': the degree could not drop during the contraction
step, since we just contracted some subtrees of the forest G'[W U (T"\ X)].
Thus 3|7\ X| < v(I) + |T \ X|, and hence 2|T \ X| < v(I). As | X| <k, we
have that 7(I) = |T| < k + @ This concludes the proof. O

Now we are ready to state the main technical lemma of this section.

Lemma 4.13. DISJOINT FEEDBACK VERTEX SET can be solved in time
©*nOM) where v < 1.6181 is the golden ratio.

Proof. Again, we give an algorithm only for the decision version of the prob-
lem, and turning it into a constructive algorithm is straightforward.

We follow a similar branching strategy, but this time we shall use our
adjusted measure p(I) that takes into account also tents. Let (G, W, k) be
the input instance. If G[W] is not a forest, then return that (G,W,k) is a
no-instance. So from now onwards we assume that G[WW] is indeed a forest.

The algorithm first applies Reductions [FVS*.1] [FVS*.2] [FVS*.3|and [FVS*.4

exhaustively. For clarity we denote the reduced instance (the one on which
Reductions [FVS*.1] [FVS*.2} [FVS*.3|and [FVS*.4 do not apply) by (G, W, k).
If 4(I) < 0 then return that (G, W, k) is a no-instance. The correctness of
this step follows from the fact that if u(I) < 0 then 7(I) > k+~(I), and thus
by Lemma we have that the given instance is a no-instance.

From now onwards we assume that pu(I) > 0. We now check whether every
vertex in V(G) \ W is either nice or a tent. If this is the case, we apply
Lemma [4.10] and solve the problem in polynomial time. Otherwise, we move
to the branching step of the algorithm. The algorithm has only one branching
rule which is described below.

Pick a vertex z that is not a tent and has the maximum possible number
of neighbors in W.
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Now we branch by including x in the solution in one branch, and excluding
it in the other branch. That is we call the algorithm on instances (G —
{z}, W,k —1) and (G,W U{x}, k). If one of these branches is a yes-instance,
then (G,W,k) is a yes-instance. Otherwise (G, W, k) is a no-instance. The
correctness of this algorithm follows from the safeness of reductions and the
fact that the branching is exhaustive.

To compute the running time of the algorithm, let us see how measure
n(I) = k+~(I)—7(I) changes. By Lemma[f.11] we know that applications of
Reductions[FVS*.1] [FVS*.2l [FVS*.3]and [FVS¥.4 do not increase the measure.
Now we will see how x(I) changes when we branch. In the branch where we
include z in the solution, we have that k& decreases by 1, the number of tents
does not decrease, and the number of connected components of G[W] remains
the same. Thus, u(I) decreases by 1.

Now let us consider the other branch, where x is included into W. In this
branch, k remains the same and 7(I) does not decrease. Since Lemma m
is not applicable, we know that there exists a connected component of H
that is not just a single tent, and there exists a vertex u in this component
whose degree in H is at most one (since H is a forest). Furthermore, since
Reductions [FVS*.1] [FVS*.2] [FVS*.3] and [FVS~.4] are not applicable, vertex
u has at least three neighbors in W. Since in the branching algorithm we
chose a vertex z that is not a tent and has the maximum possible number
of neighbors in W, we have that = also has at least three neighbors in W.
Since Reduction is not applicable, when we include = to W, graph
G[W U {z}] remains a forest and its number of connected components ~(I)
drops by at least 2. Thus, u(I) drops by at least 2.

The last two paragraphs show that the algorithm has a branching vector
of (1,2). Hence, the algorithm solves DISJOINT FEEDBACK VERTEX SET in
time DM Since initially we have that u(I) < k + |[W| < 2k + 1, we
obtain the claimed running time. ad

Pipelined with the iterative compression framework (see the discussion in
Section , Lemma implies the following theorem.

Theorem 4.14. FEEDBACK VERTEX SET can be solved in time

(14 kW = 36181500,

4.4 OpD CYCLE TRANSVERSAL

In this section we give an algorithm for ODD CYCLE TRANSVERSAL using the
method of iterative compression. Recall that X is an odd cycle transversal
of G if graph G — X is bipartite. Again, we follow the same generic steps as
described in Section 111
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We start by defining D1SJOINT ODD CYCLE TRANSVERSAL. In this prob-
lem, on the input we are given an undirected graph G, an odd cycle transversal
W of size k+ 1 and a positive integer k. The objective is to find an odd cycle
transversal X C V(G) \ W of size at most k, or to conclude that no such
odd cycle transversal exists. We give an algorithm for D1sJoINT ODD CYCLE
TRANSVERSAL running in time 2¥n0().

Our algorithm for DiSJOINT ODD CYCLE TRANSVERSAL will use the fol-
lowing annotated problem as a subroutine. In the ANNOTATED BIPARTITE
COLORING problem, we are given a bipartite graph G, two sets By, By C
V(G), and an integer k, and the goal is to find a set X consisting of at most
k vertices, such that G — X has a proper 2-coloring f : V(G) \ X — {1,2}
(i.e., f(u) # f(v) for every edge uv) that agrees with the sets B; and Ba,
that is, f(v) =4 whenever v € B; \ X and i =1, 2.

An algorithm for ANNOTATED BIPARTITE COLORING. Let (G, By, Ba, k)
be an instance of ANNOTATED BIPARTITE COLORING. We can view vertices
of By and B; as precolored vertices. We do not assume that this precoloring
is proper, that is, a pair of adjacent vertices can be colored with the same
color. Moreover, we do not assume that B; and Bs are disjoint, thus some
vertices can have both colors. We want to find a set X of size at most k
such that in graph G — X there is a proper 2-coloring extending precolored
vertices. To find such a coloring we proceed as follows. We fix an arbitrary
proper 2-coloring f* of G, f*: V(G) — {1,2}. Clearly, such a coloring exists
as G is a bipartite graph. Let Bf = (f*)~1(i) for i = 1,2. The objective is
to find a set S of at most k vertices such that G — S has another 2-coloring
f such that B; \ X is colored ¢ for i = 1,2. Observe that each vertex of
C := (B1 N Bj) U (ByN BY) should be either included in X, or have different
colors with respect to f* and f. That is, for every v € C' \ X, it holds that
f*(v) # f(v), i.e., the vertices of C'\ X must change their colors. Similarly,
each vertex of R := (B; N B}) U (Bz N Bj) that is not included in X should
keep its color. Thus, for every v € R it holds that f*(v) = f(v), unless
v € X. See the diagram on Fig. The following lemma helps us in solving
the annotated problem.

Lemma 4.15. Let G be a bipartite graph and f* be an arbitrary proper 2-
coloring of G. Then set X is a solution for ANNOTATED BIPARTITE COL-
ORING if and only if X separates C and R, i.e., no component of G — X
contains vertices from both C'\ X and R\ X. Furthermore, such a set X of
size k (provided it exists) can be found in time O(k(n + m)).

Proof. We first prove the forward direction of the proof. In a proper 2-coloring
of G— X, say f, each vertex of V(G)\ X either keeps the same color (f(v) =
f*(v)) or changes its color (f(v) # f*(v)). Moreover, two adjacent vertices
have to pick the same decision. Therefore, for every connected component
of G\ X, either all vertices v satisfy f(v) = f*(v) or all vertices v satisfy
f(v) # f*(v). Consequently, no connected component of G \ X may contain



4.4 Opp CycLE TRANSVERSAL 93

B B,
T N R
. R ¢ B
¢ | = m
N AN J

Fig. 4.2: Sets C' and R

a vertex of both R (which needs to keep its color) and C' (which needs to
change its color).

For the backward direction, let X be a set separating R and C'. Define the
coloring f : V(G) \ X — {1,2} as follows: first set f = f* and then flip the
coloring of those components of G — X that contain at least one vertex of
C'\ X. No vertex of R is flipped and thus this is the required 2-coloring.

To find a vertex set of size at most k separating C' and R, one can use
the classic max-flow min-cut techniques, e.g., by k iterations of the Ford-
Fulkerson algorithm (see Theorem . Thus we obtain the promised running
time bound. O

Back to ODD CYCLE TRANSVERSAL. Now we are going to use our algorithm
for ANNOTATED BIPARTITE COLORING to solve ODD CYCLE TRANSVERSAL
by applying the iterative compression framework. As usual, to this end we
first give an algorithm for the disjoint variant of the problem, DisJOINT ODD
CycLE TRANSVERSAL. Recall that here we are given a graph G, an integer
k, and a set W of k41 vertices such that G — W is bipartite. The objective is
to find a set X C V(G)\ W of at most k vertices such that G — X is bipartite,
that is, admits a proper 2-coloring f, or to conclude that no such set exists.
Towards this we do as follows. Every vertex v € W remains in G — X and
hence G[W] has to be bipartite, as otherwise we are clearly dealing with a
no-instance. The idea is to guess the bipartition of W in G — X.

That is, we iterate over all proper 2-colorings fiw : W — {1,2} of G[W]
and we look for a set X C V(G) \ W such that G — X admits a proper
2-coloring that extends fy. Note that there are at most 21" = 25+ choices
for the coloring fy. Let B}V = fv}l (i) fori=1,2.

Observe that every vertex v in By := Ng(B}V) N (V(G) \ W) needs to be
either colored 2 by f, or deleted (included in X). Similarly, every vertex v in
By == Ng(BY¥) N (V(G) \ W) needs to be either colored 1 by f, or deleted.
Consequently, the task of finding the set X and the proper 2-coloring f
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that extends fy reduces to solving an ANNOTATED BIPARTITE COLORING
instance (G — W, By, B, k).

By Lemmal4.15] this instance can be solved in O(k(n+m)) time and hence
the total running time for solving D1SJOINT ODD CYCLE TRANSVERSAL is
O(2% - k(n +m)). Thus we obtain the following lemma.

Lemma 4.16. DISJOINT ODD CYCLE TRANSVERSAL can be solved in time
O2% - k(n +m)).

Now Lemma4.16] together with the iterative compression approach, yields
the following theorem.

Theorem 4.17. ODD CYCLE TRANSVERSAL is solvable in time O(3F-kn(n+

Exercises

4.1 (42). Prove Lemma[L.3]
4.2. Prove Lemma [£5]

4.3. Obtain an algorithm for 3-Hrrring Skt running in time 2.46565n°(1) using iterative
compression. Generalize this algorithm to obtain an algorithm for d-HiTTING SET running
in time ((d — 1) 4 0.4656)kn©).

4.4. An undirected graph G is called perfect if for every induced subgraph H of G, the size
of the largest clique in H is the same as the chromatic number of H. We consider the Opp
CvycLE TRANSVERSAL problem, restricted to perfect graphs.

Recall that Exercise asked for a kernel with O(k) vertices, whereas Exercise
asked for a 3*n°(W_time branching algorithm for this problem. Here we ask for a 28n@ (-
time algorithm based on iterative compression.

4.5 (&). In the CrusTer VErRTEX DELETION problem, we are given a graph G and an
integer k, and the task is to find a set X of at most k vertices of G such that G — X is a
cluster graph (a disjoint union of cliques). Using iterative compression, obtain an algorithm
for CLUSTER VERTEX DELETION running in time 25n©1),

4.6. A graph G is a split graph if V(G) can be partitioned into sets C and I, such that C
is a clique and [ is an independent set. In the SpLIT VERTEX DELETION problem, given a
graph G and an integer k, the task is to check if one can delete at most k vertices from G
to obtain a split graph.

Recall that Exercise asked for a 4*n®(M_time algorithm for this problem, via a
reduction to VERTEX CovER ABOVE Marching. Here we ask for a 2602 _time algorithm
for this problem using iterative compression.

4.7 (). A set X C V(G) of an undirected graph G is called an independent feedback
vertex set if G[X] is independent and G — X is acyclic. In the INDEPENDENT FEEDBACK
VERTEX SET problem, we are given as input a graph G and a positive integer k, and the
objective is to test whether there exists in G an independent feedback vertex set of size
at most k. Show that INDEPENDENT FEEDBACK VERTEX SET is in FPT by obtaining an
algorithm with running time 55n©().
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4.8. Obtain a polynomial kernel for DisjoiNT FEEDBACK VERTEX SET. Improve it to a
kernel with O(k) vertices.

4.9 (,;';) The EpGeE BIpaRrTiZATION problem is the edge-deletion variant of Opp CycLE
TRANSVERSAL: one is given a graph G and an integer k, and the task is to remove at most
k edges from G in order to make G bipartite. Give a 25 - n©(1_time algorithm for Epce
BIPARTIZATION using iterative compression.

In the next few exercises we study the VArIaABLE DELETION ALMOST 2-SAT problem:
given a Boolean formula ¢ in CNF, with every clause containing at most two literals, and
an integer k, the task is to delete at most k variables from ¢ to make it satisfiable; a
variable is deleted together with all clauses containing it. It is sometimes useful to think
of deleting a variable as setting it to both true and false at once, so that it satisfies all the
clauses where it appears.

In Theorem [3.12] we have shown an FPT algorithm for this problem, by a reduction
to VERTEX COVER ABOVE MATCHING. Furthermore, Exercises and asked you
to prove that VariaBLE DeLETION ALmosT 2-SAT is equivalent to the (more standard)
clause-deletion variant called simply ALmosT 2-SAT, where we are allowed only to delete
k clauses. Here, we study relations between Opp CycLE TRANSVERSAL and VARIABLE
DEeLETION ALMosT 2-SAT, and develop a different FPT algorithm for VARIABLE DELE-
TION ALMOST 2-SAT, based on iterative compression.

4.10. Express a given Opp CycLE TRANSVERSAL instance (G, k) as an instance (¢, k) of
VARIABLE DELETION ALMOST 2-SAT.

4.11. Consider the following annotated variant of VARIABLE DELETION ALMmOST 2-SAT,
which we call ANNOTATED SATISFIABLE ALMOST 2-SAT: Given a satisfiable formula ¢,
two sets of variables VT and V1, and an integer k, the task is to check if there exists a set
X of at most k variables of ¢ and a satisfying assignment v of ¢ — X such that ¢¥(z) =T
for every € VT \ X and v¥(z) = L for every € V- \ X. Assuming that there exists
a Fn®W_time FPT algorithm for Annorarep SarisriaBLe Armost 2-SAT for some
constant ¢ > 1, show that VARIABLE DELETION ALMOsT 2-SAT admits a (1 + 2c)kno(1>—
time algorithm.

4.12. Express a given ANNOTATED BIPARTITE COLORING instance (G, Bi, B2,k) as an
instance (o, VT, VL k) of ANNOTATED SATISFIABLE ALMOST 2-SAT.

4.13. Consider the following operation of flipping ¢ variable x in a VARIABLE DELETION
ALmMosT 2-SAT or an ANNOTATED SATISFIABLE ALMoOsT 2-SAT instance: we replace
every literal z with -« and every literal =« with x. Furthermore, in the case of ANNOTATED
SATISFIABLE ALMOST 2-SAT, if € V for some o € {T, L}, then we move x to V7.

Using the flipping operation, show that it suffices to consider only ANNOTATED SATIS-
FIABLE ALMOST 2-SA'T instances where an assignment that assigns false to every variable
satisfies the input formula ¢. That is, there are no clauses of the form z Vv y.

4.14 (£). Consider the following vertex-deletion variant of the DiGrapH Pair CuT prob-
lem with a sink: given a directed graph G, designated vertices s,t € V(G), a family of pairs
of vertices F C (V<2G)), and an integer k, check if there exists a set X C V(G)\{s, t} of size
at most k such that ¢ is unreachable from s in G — X and every pair in F either contains
a vertex of X or contains a vertex that is unreachable from s in G — X. Exercise asks
you to design a 26n®M_time algorithm for this problem.

1. Deduce from Exercise [£.13] that, when considering the ANNOTATED SATISFIABLE AL-
MosT 2-SAT problem, one can consider only instances where all the clauses are of
the form z = y or -z V —y. (Remember unary clauses.)

2. Use this insight to design a 2¥n®(M_time algorithm for ANNOTATED SATISFIABLE
ArLmosT 2-SAT, using the aforementioned algorithm of Exercise[8.19]as a subroutine.

3. Conclude that such a result, together with a solution to Exercise gives a 5kn@M).
time algorithm for VArRIABLE DELETION ALMOST 2-SAT.
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Hints

This problem is a standard example for dynamic programming. Let wp and wq be two
sequences, of length p and ¢, respectively. For every 0 < ¢ < p and 0 < j < g, we define
T[i, j] to be the length of the longest common subsequence of substrings wp[1,...,] and
wgq(1,...,]. Then, T[4, j] equals the maximum of: T[i—1, j], T[4, j — 1] and, if wp[i] = wq[j],
14+T[i—1,5—1].

In the case of 3-HiTTiNG SET, observe that the disjoint version of the problem is
essentially a VErTEX COVER instance, as every set of size 3 contains at least one undeletable
element. Then, use the algorithm of Theorem In the general case, generalize this
observation: the disjoint version of the problem is also a d-HirTing SET instance, but
every set lost at least one element.

Reduce the disjoint version of the problem to a minimum vertex cover problem on an
auxiliary bipartite graph. Some insight from Exercise may help you.

The exercise boils down to a task of showing that the disjoint version of the problem
is polynomial-time solvable.

First, observe that a graph is a cluster graph if and only if it does not have an induced
path on three vertices. In the disjoint version of the problem, given (G, S, k) such that
S| =k +1and G — S is a cluster graph, we are looking for a solution of size at most k
such that it is disjoint from S.

e We can assume that the subgraph induced on S is a cluster graph. Why?

e What can you do if there is a vertex in V(G) \ S that is adjacent to two of the clusters
of G[S], the subgraph induced on S? Or a vertex in V(G) \ S that is adjacent to some,
but not all vertices of one of the clusters of G[S]?

e Now we can assume that every vertex in V(G)\ S is either completely nonadjacent to .S,
or completely adjacent to exactly one cluster of G[S]. Argue that the resulting problem
(of finding a subset of vertices to be deleted from V(G)\ S to make the resulting graph
a cluster graph) can be solved by using an algorithm for finding a maximum matching
of minimum cost in a bipartite graph.

Again, the task reduces to showing that the disjoint version of the problem is
polynomial-time solvable.

The main observation is that a split graph on n vertices has at most n? partitions of
the vertex set into the clique and independent set part: for a fixed one partition, at most
one vertex can be moved from the clique side to the independent one, and at most one
vertex can be moved in the opposite direction. (In fact one can show that it has at most
O(n) split partitions.) Hence, you can afford guessing the “correct” partition of both the
undeletable and the deletable part of the instance at hand.

In short, mimic the 3.619¥n°(1_time algorithm for FEepBACK VERTEX SET.

That is, design a 4*n®@)_time algorithm for the disjoint version of the problem in
the following manner. Assume we are given an instance (G, W, k) of the following disjoint
version of INDEPENDENT FEEDBACK VERTEX SET: G — W is a forest, |W| = k + 1, and we
seek an independent feedback vertex set X of G that is of size at most k and is disjoint
from W. Note that we do not insist that G[W] be independent.

A tent is a vertex v ¢ W, of degree 2, with both neighbors in W. For an instance
I = (G,W,k), we let 7(I) be the number of tents, v(I) be the number of connected
components of G[W], and u(I) =k + v(I) — 7(I) be the potential of I. Proceed with the
following steps.

1. Adapt the reduction rules that deal with vertices of degree 1 and with vertices v ¢
W that have more than one incident edge connecting them to the same connected
component of G[W].
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2. Design a reduction that deals with vertices v ¢ W of degree 2 that have exactly one
neighbor in W. Note that you cannot simply move them to W, due to the condition
of solutions being independent. Instead, proceed similarly as we did in the FEEDBACK
VERTEX SET algorithm for vertices of degree 3, with exactly two neighbors in W.

3. Finally, prove that the potential is positive on a yes-instance by adapting the proof of

Lemma [£121

To perform the iterative compression step, observe that picking one endpoint of every
edge of a solution to EDGE BiPaRTIZATION yields an odd cycle transversal of the graph. Use
this observation to reduce the problem to designing a compression routine for the following
task: you are given a graph G with an odd cycle transversal W of size k + 1, and the task
is to find a solution to EbGE BIPARTIZATION of size at most k, or to conclude that no such
solution exists. Branch into 2¢t1 subproblems, guessing the right bipartition of W in the
bipartite graph after removing the edges of the solution. Then reduce verifying existence of
a solution in a branch to an auxiliary polynomial-time solvable cut problem, using similar
ideas as with sets C' and R in the algorithm for Obp CycLE TRANSVERSAL.

Apply the reduction rules given for the disjoint version of the problem. Argue that if
there are too many vertices (like k(1) or O(k)) of degree at most 2 in the deletable part,
then the given instance is a no-instance. Else, use a standard tree-based argument to show
that the instance is small.

Treat every vertex as a variable. For every edge zy € E(G), introduce clauses xVy and
-z V —y. This concludes the construction of the formula ¢. To show correctness, observe
that the clauses for an edge xy force x and y to attain different values in a satisfying
assignment.

Using iterative compression, the task boils down to designing a (2¢)*n®®-time
algorithm for the disjoint version of VAriaBLE DELETION ALMOST 2-SAT. Thus, we have
an instance (¢, W, k), where W is a set of k + 1 variables from ¢ such that ¢ — W is
satisfiable, and we seek a solution X to VArRiaBLE DEeLETION ArLmosT 2-SAT on (¢, k)
that is disjoint from W.

At the cost of 2FF1 subcases, we guess the values of variables of W in some satisfying
assignment of ¢ — X. Now, we can do the following cleaning: discard all clauses satisfied
by the guessed assignment, and discard the current branch if there exists a clause with all
literals evaluated to false by the guessed assignment. Observe that every remaining clause
C = (£1 V{2) that contains a literal with a variable from W (say, ¢1) satisfies the following:
01 is evaluated to false by the guessed assignment, and the second literal ¢ contains a
variable not in W. For every such clause C, we put the variable of fo into V1 if £ is a
positive literal, and otherwise we put the variable of ¢ into V1. Argue that it remains to
solve an ANNOTATED SATISFIABLE ALMOST 2-SAT instance (¢ — W, VT, VJ-,k).

.12l Proceed as in Exercise {10

The first and the last point are straightforward. Here we elaborate on the second
point.

We express the task of solving the input instance (¢, VT, VL k) of ANNOTATED SAT-
ISFIABLE ALMOST 2-SAT as a vertex-deletion DigraPH Pair Cut with a sink instance
(G, s,t, F, k) as follows.

Start with vertices s and t.

For every variable x, introduce a single vertex x.

For every clause z = y (i.e., ~z V y), introduce an edge (z,y).
For every clause —z V -y, introduce a pair {z,y} to the family F.
For every vertex y € VT, we introduce an edge (s,v).

For every vertex y € V1, we introduce an edge (y,t).

D O W N~
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Argue that solutions to the aforementioned node-deletion Dicrapr Pamr CurT instance
(G, s, F, k) are in one-to-one correspondence with the solutions to the original instance of
ANNOTATED SATISFIABLE ALMOST 2-SAT. The intuition is that the nodes x reachable
from s after the solution is removed correspond to the variables that are set to true in a
satisfying assignment.

Bibliographic notes

The idea of iterative compression was first introduced by Reed, Smith, and Vetta [397]
to prove that Opp CvycLE TRANSVERSAL is fixed-parameter tractable. The technique has
been used in several FPT algorithms for various problems, including DIRECTED FEEDBACK
Vertex SeT [85] and Aumost 2-SAT [394].

The algorithm for FEEDBACK VERTEX SET IN TOURNAMENTS of Theorem [£.7]is due to
Dom, Guo, Hiiffner, Niedermeier, and Truf [I40]. For the FEEDBACK VERTEX SET problem,
the parametric dependency in the running time has been systematically improved over the
years [393} 241, 127, [77), [70], resulting in the current best deterministic algorithm running in
time 3.592n () [30T]. If we allow randomization, then the problem admits an algorithm
with running time 3% .n@@) [I18] — we will actually see this algorithm in Section [11.2.1)).
Our simpler 55 (1) _time algorithm for FEEDBACK VERTEX SET follows the work of Chen,
Fomin, Liu, Lu, and Villanger [77]. The description of the 3.619¥n°(1) algorithm follows
Kociumaka and Pilipczuk [30T]. The observation that DisjoINT FEEDBACK VERTEX SET
instance becomes polynomial-time solvable if every deletable vertex is nice or a tent is due
to Cao, Chen, and Liu [70].

The algorithm for CLusTER VERTEX DELETION from Exercise 4.5 originates in the work
of Hiiffner, Komusiewicz, Moser, and Niedermeier [271]. A 25 - n©() algorithm for EpGE
BIPARTIZATION was first given by Guo, Gramm, Hiiffner, Niedermeier, and Wernicke [241];
their algorithm is actually quite different from the one sketched in the hint to Exercise [£.9]
The parameterized complexity of ALmosT 2-SAT was open for some time until Razgon
and O’Sullivan gave a 155721 algorithm. The current fastest algorithm for this problem
runs in time 2.3155n°(1) [328]. The algorithm for Armost 2-SAT from Exercise m
originates in the work of Kratsch and Wahlstrém [310]; they gave a polynomial kernel for
the problem, and the algorithm follows from their ideas implicitly.

In this book we will again use iterative compression to solve PLANAR VERTEX DELETION

in Chapter[7} and DirecTeD FEEDBACK VERTEX SET in Chapter [§



Chapter 5

Randomized methods in parameterized
algorithms

In this chapter, we study how the powerful paradigm
of randomization can help in designing FPT algo-
rithms. We introduce the general techniques of color
coding, divide and color, and chromatic coding, and
show the use of these techniques on the problems
LoNGEST PATH and d-CLUSTERING. We discuss also
how these randomized algorithms can be derandomized
using standard techniques.

» NN
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We give a few commonly used approaches to design randomized FPT al-
gorithms.

In Section 5.1} we start with a simple example of an algorithm for FEED-
BACK VERTEX SET. Here, we essentially observe that, after applying a few
easy reduction rules, a large fraction of the edges of the graph needs to be
adjacent to the solution vertices — and, consequently, taking into the solu-
tion a randomly chosen endpoint of a randomly chosen edge leads to a good
success probability.

Then, in Section [5.2] we move to the very successful technique of color
coding, where one randomly colors a universe (e.g., the vertex set of the in-
put graph) with a carefully chosen number of colors and argue that, with
sufficient probability, a solution we are looking for is somehow “properly col-
ored”. The problem-dependant notion of “properly colored” helps us resolve
the problem if we only look for properly colored solutions. For resolving the
colored version of the problem, we use basic tools learned in the previous
chapters, such as bounded search trees. In this section we start with the clas-
sic example of a color coding algorithm for LONGEST PATH. Then, we show
how a random partition (i.e., a random coloring with two colors) can be used
to highlight a solution, using an example of the SUBGRAPH ISOMORPHISM
problem in bounded degree graphs. Moreover, we present the so-called divide
and color technique for LONGEST PATH, where a recursive random partition-
ing scheme allows us to obtain a better running time than the simple color
coding approach. We conclude this section with a more advanced example of
a chromatic coding approach for d-CLUSTERING.

99
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Finally, in Section [5.6] we briefly discuss the methods of derandomizing
algorithms based on color coding. We recall the necessary results on con-
structing pseudorandom objects such as splitters, perfect hash families, uni-
versal sets and small k-wise independent sample spaces, and show how to
replace the random coloring step of (variants of) the color coding approach
by iterating over a carefully chosen pseudorandom object.

Let us briefly recall the principles of randomization in algorithms. We
assume that the algorithm is given access, apart from the input, to a stream
of random bits. If the algorithm reads at most r random bits on the given
input, then the probability space is the set of all 2" possible strings of random
bits read by the algorithm, with uniform probability distribution (i.e., each
bit is chosen independently and uniformly at random). Whenever we say
that “an algorithm does X with probability at least/at most p”, we mean the
probability measured in this probability space.

Consider an algorithm for a decision problem which given a no-instance
always returns “no,” and given a yes-instance returns “yes” with probability

€ (0,1). Such an algorithm is called a one-sided error Monte Carlo algorithm
with false negatives.

Sometimes we would like to improve the success probability p, especially
in our applications where we often have bounds like p = 1/ 20() or, more
generally, p = 1/f(k) for some computable function f. It is not difficult to
see that we can improve the success probability at the price of worse running
time. Namely, we get a new algorithm by repeating the original algorithm ¢
times and returning “no” only if the original algorithm returned “no” in each of
the t repetitions. Clearly, given a no-instance the new algorithm still returns
“no.” However, given a yes-instance, it returns “no” only if all ¢ repetitions
returned an incorrect “no” answer, which has probability at most

(1-p) < (e7)f =1/,

where we used the well-known inequality 1+ x < e®. It follows that the new
success probability is at least 1 — 1/ePt. Note that in particular it suffices to
put t = fﬁ to get constant success probabilityﬂ

If a one-sided error Monte Carlo algorithm has success probability at
least p, then repeating it independently f%] times gives constant success
probability. In particular, if p = 1/f(k) for some computable function
f, then we get an FPT one-sided error Monte Carlo algorithm with
additional f(k) overhead in the running time bound.

I In this chapter, by “constant success probability” or “constant error probability” we mean
that the success probability of an algorithm is lower bounded by a positive universal con-
stant (or, equivalently, the error probability is upper bounded by some universal constant
strictly smaller than 1).
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In the area of polynomial-time algorithms, quite often we develop an algo-
rithm that does something useful (e.g., solves the problem) with probability at
least p, where 1/p is bounded polynomially in the input size. If this is the case,
then we can repeat the algorithm a polynomial number of times, obtaining
a constant error probability. In the FPT world, the same principle applies;
however, now the threshold of “useful probability” becomes 1/(f(k)n®W).
That is, if we develop an algorithm that runs in FPT time and solves the
problem with probability at least 1/(f(k)n®(1)), then repeating the algorithm
f(k)no(l) times gives us constant error probability, while still maintaining
an FPT running time bound. This is the goal of most of the algorithms in
this chapter.

5.1 A simple randomized algorithm for FEEDBACK
VERTEX SET

In this section, we design a simple randomized algorithm for FEEDBACK VER-
TEX SET. As discussed in Section when tackling with FEEDBACK VER-
TEX SET, it is more convenient to work with multigraphs, not only simple
graphs. Recall that both a double edge and a loop are cycles, and we use the
convention that a loop at a vertex v contributes 2 to the degree of v.

The following crucial lemma observes that, once we apply to the input
instance basic reduction rules that deal with low-degree vertices, many edges
of the graph are incident to the solution vertices.

Lemma 5.1. Let G be a multigraph on n vertices, with minimum degree at
least 3. Then, for every feedback vertex set X of G, more than half of the
edges of G have at least one endpoint in X .

Proof. Let H = G — X. Since every edge in E(G) \ E(H) is incident to a
vertex in X, the claim of the lemma is equivalent to |E(G)\ E(H)| > |E(H)|.
However, since H is a forest, |V(H)| > |E(H)| and it suffices to show that
E(G)\ E(H)| > |V (H)|.

Let J denote the set of edges with one endpoint in X and the other in
V(H). Let V<1, V5 and V>3 denote the set of vertices in V' (H) such that they
have degree at most 1, exactly 2, and at least 3 in H, respectively. (Note that
we use here the degree of a vertex in the forest H, not in the input graph G.)
Since G has minimum degree at least 3, every vertex in V<; contributes at
least two distinct edges to J. Similarly, each vertex in V5 contributes at least
one edge to J. As H is a forest, we have also that |V>3| < [V<1|. Putting all
these bounds together, we obtain:
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|E(G)\ E(H)| > |J|
> 2\Var| + [Va| > [V | + [Va| + V>3]
= |V(H)|.

This concludes the proof of the lemma. a

Recall that in Section we have developed the simple reduction rules
[FVS.IHFVS.5 that reduce all vertices of degree at most 2 in the input graph.
Lemma [5.1] says that, once such a reduction has been performed, a majority
of the edges have at least one endpoint in a solution. Hence, if we pick an edge
uniformly at random, and then independently pick its random endpoint, with
probability at least 1/4 we would pick a vertex from the solution. By iterating
this process, we obtain an algorithm that solves the input FEEDBACK VERTEX
SET instance in polynomial time, with probability at least 4.

Theorem 5.2. There exists a polynomial-time randomized algorithm that,
given a FEEDBACK VERTEX SET instance (G, k), either reports a failure or
finds a feedback vertex set in G of size at most k. Moreover, if the algorithm
is given a yes-instance, it returns a solution with probability at least 47F.

Proof. We describe the algorithm as a recursive procedure that, given a graph
G and an integer k, aims at a feedback vertex set of G of size at most k.

We first apply exhaustively Reductions [FVS.IHFVS.5| to the FEEDBACK
VERTEX SET instance (G, k). If the reductions conclude that we are dealing
with a no-instance, then we report a failure. Otherwise, let (G’,k’) be the
reduced instance. Note that 0 < ¥’ < k and G’ has minimum degree at least
3. Let Xg be the set of vertices deleted due to Reduction Note that
the vertices of Xy have been qualified as mandatory vertices for a feedback
vertex set in G, that is, there exists a feedback vertex set in G of minimum
possible size that contains X, and for any feedback vertex set X' of G’,
X'U X is a feedback vertex set of G. Moreover, |Xo| =k — k'.

If G’ is an empty graph, then we return Xy; note that in this case | Xo| < k
as k' > 0, and X is a feedback vertex set of G. Otherwise, we pick an edge e of
G’ uniformly at random (i.e., each edge is chosen with probability 1/|E(G")|),
and choose one endpoint of e independently and uniformly at random. Let v
be the chosen endpoint. We recurse on (G’ — v, k' — 1). If the recursive step
returns a failure, then we return a failure as well. If the recursive step returns
a feedback vertex set X', then we return X := X’ U {v} U Xj.

Note that in the second case the set X’ is a feedback vertex set of G’ — v of
size at most k' — 1. First, observe that the size bound on X’ implies | X| < k.
Second, we infer that X'U{v} is a feedback vertex set of G’ and, consequently,
X is a feedback vertex set of G. Hence, the algorithm always reports a failure
or returns a feedback vertex set of G of size at most k. It remains to argue
about the probability bound; we prove it by induction on k.

Assume that there exists a feedback vertex set X of G of size at most
k. By the analysis of the reduction rules of Section Reduction is
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not triggered, the instance (G, k') is computed and there exists a feedback
vertex set X' of G’ of size at most k'. If G’ is empty, then the algorithm
returns Xo deterministically. Otherwise, since G’ has minimum degree at
least 3, Lemma implies that, with probability larger than 1/2, the edge e
has at least one endpoint in X’. Consequently, with probability larger than
1/4, the chosen vertex v belongs to X', and X’ \ {v} is a feedback vertex
set of size at most &' — 1 in the graph G’ — v. By the inductive hypothesis,
the recursive call finds a feedback vertex set of G’ — v of size at most k' — 1
(not necessarily the set X’ \ {v}) with probability at least 4~ (=1 Hence, a
feedback vertex set of GG of size at most k is found with probability at least
3 4= =1) = 4=F" > 4=k This concludes the inductive step, and finishes the
proof of the theorem. O

As discussed at the beginning of this section, we can repeat the algorithm
of Theorem [5.2]independently 4* times to obtain a constant error probability.

Corollary 5.3. There exists a randomized algorithm that, given a FEED-
BACK VERTEX SET instance (G, k), in time 4*n®M) either reports a failure
or finds a feedback vertex set in G of size at most k. Moreover, if the algorithm
is given a yes-instance, it returns a solution with a constant probability.

5.2 Color coding

The technique of color coding was introduced by Alon, Yuster and Zwick to
handle the problem of detecting a small subgraph in a large input graph. More
formally, given a k-vertex “pattern” graph H and an n-vertex input graph G,
the goal is to find a subgraph of G isomorphic to H. A brute-force approach
solves this problem in time roughly O(n*); the color coding technique ap-
proach allows us to obtain an FPT running time bound of 2°*)n°() in the
case when H is a forest or, more generally, when H is of constant treewidth
(for more on treewidth, we refer you to Chapter . We remark here that, as
we discuss in Chapter [13] such an improvement is most likely not possible in
general, as the case of H being a k-vertex clique is conjectured to be hard.

The idea behind the color coding technique is to randomly color the entire
graph with a set of colors with the number of colors chosen in a way that,
if the smaller graph does exist in this graph as a subgraph, then with high
probability it will be colored in a way that we can find it efficiently. In what
follows we mostly focus on a simplest, but very instructive case of H being a
k-vertex path.

We remark that most algorithms based on the color coding technique can
be derandomized using splitters and similar pseudorandom objects. We dis-
cuss these methods in Section
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5.2.1 A color coding algorithm for LONGEST PATH

In the LONGEST PATH problem, we are given a graph G and a positive integer
k as input, and the objective is to test whether there exists a simple path on
k vertices in the graph G. Note that this corresponds to the aforementioned
“pattern” graph search problem with H being a path on k vertices (henceforth
called a k-path for brevity).

Observe that finding a walk on k vertices in a directed graph is a simple
task; the hardness of the LONGEST PATH problem lies in the requirement that
we look for a simple path. A direct approach involves keeping track of the
vertices already visited, requiring an (Z) factor in the running time bound.
The color coding technique is exactly the trick to avoid such a dependency.

Color the vertices uniformly at random from {1,...,k}, and find a path
on k vertices, if it exists, whose all colors are pairwise distinct.

The essence of the color coding technique is the observation that, if we
color some universe with & colors uniformly at random, then a given k-element
subset is colored with distinct colors with sufficient probability.

Lemma 5.4. Let U be a set of size n, and let X C U be a subset of size
k. Let x : U — [k] be a coloring of the elements of U, chosen uniformly at
random (i.e., each element of U is colored with one of k colors uniformly and
independently at random). Then the probability that the elements of X are
colored with pairwise distinct colors is at least e *.

Proof. There are k™ possible colorings x, and k!k"~% of them are injective
on X. The lemma follows from the well-known inequality k! > (k/e). O

Hence, the color coding step reduces the case of finding a k-path in a graph
to finding a colorful k-path in a vertex-colored graph. (In what follows, a path
is called colorful if all vertices of the path are colored with pairwise distinct
colors.) Observe that this step replaces the (Z) factor, needed to keep track
of the used vertices in a brute-force approach, with a much better 2% factor,
needed to keep track of used colors. As the next lemma shows, in the case of
finding a colorful path, the algorithm is relatively simple.

Lemma 5.5. Let G be a directed or an undirected graph, and let x : V(G) —
[k] be a coloring of its vertices with k colors. There exists a deterministic
algorithm that checks in time 2°n°M) whether G contains a colorful path on
k vertices and, if this is the case, returns one such path.

Proof. Let Vi,..., Vi be a partitioning of V(G) such that all vertices in V;
are colored 7. We apply dynamic programming: for a nonempty subset S of
{1,...,k} and a vertex u € ;. ¢4 Vi, we define the Boolean value PATH(S, u)
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to be equal to true if there is a colorful path with vertices colored with all
colors from S and with an endpoint in u. For |S| = 1, note that PATH(S, u)
is true for any v € V(G) if and only if S = {x(u)}. For |S| > 1, the following
recurrence holds:

PATH(S, u) = {\/{PATH(S \{x(w},v) : w e EBG)} if y(u) €S
7 False otherwise.

Indeed, if there is a colorful path ending at w using all colors from S, then
there has to be colorful path ending at a neighbor v of u and using all colors
from S\ {x(u)}.

Clearly, all values of PATH can be computed in time 2*n°(1) by applying
the above recurrence, and, moreover, there exists a colorful k-path in G if
and only if PATH([k],v) is true for some vertex v € V(G). Furthermore, a
colorful path can be retrieved using the standard technique of backlinks in
dynamic programming. a

We now combine Lemmas [5.4] and to obtain the main result of this
section.

Theorem 5.6. There exists a randomized algorithm that, given a LONGEST
PaTH instance (G, k), in time (2¢)*n®() either reports a failure or finds a
path on k vertices in G. Moreover, if the algorithm is given a yes-instance,
it returns a solution with a constant probability.

Proof. We show an algorithm that runs in time 2*n°() and, given a yes-
instance, returns a solution with probability at least e~*. Clearly, by repeat-
ing the algorithm independently e times, we obtain the running time bound
and success probability guarantee promised by the theorem statement.

Given an input instance (G, k), we uniformly at random color the vertices
of V(G) with colors [k]. That is, every vertex is colored independently with
one color from the set [k] with uniform probability. Denote the obtained
coloring by x : V(G) — [k]. We run the algorithm of Lemma on the
graph G with coloring x. If it returns a colorful path, then we return this
path as a simple path in G. Otherwise, we report failure.

Clearly, any path returned by the algorithm is a k-path in G. It remains
to bound the probability of finding a path in the case (G, k) is a yes-instance.

To this end, suppose G has a path P on k vertices. By Lemma [5.4] P
becomes a colorful path in the coloring y with probability at least e~*. If this
is the case, the algorithm of Lemma finds a colorful path (not necessarily
P itself), and the algorithm returns a k-path in G. This concludes the proof
of the theorem. O
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5.3 Random separation

In this section we give a variant of the color coding technique that is par-
ticularly useful in designing parameterized algorithms on graphs of bounded
degree. The technique, usually called random separation in the literature,
boils down to a simple but fruitful observation that in some cases if we ran-
domly partition the vertex or edge set of a graph into two sets, the solution
we are looking for gets highlighted with good probability.

We illustrate the method on the SUBGRAPH ISOMORPHISM problem, where
we are given an n-vertex graph G and a k-vertex graph H, and the objective
is to test whether there exists a subgraph H of G such that H is isomorphic
to H. Observe that LONGEST PATH is a special case of SUBGRAPH ISOMOR-
PHISM where H is a path on k vertices. Exercise asks you to generalize
the color coding approach for LONGEST PATH to TREE SUBGRAPH ISOMOR-
PHISM, where H is restricted to being a tree, whereas Exercise takes
this generalization further, and assumes H has bounded treewidth (the no-
tion of treewidth, which measures resemblance of a graph to a tree, is the
topic of Chapter . Also, observe that the CLIQUE problem is a special case
of SUBGRAPH ISOMORPHISM, where H is a clique on k vertices. It is be-
lieved that CLIQUE is not FPT (see Chapter , and, consequently, we do
not expect that the general SUBGRAPH ISOMORPHISM problem is FPT when
parameterized by k.

In this section we restrict ourselves to graphs of bounded degree, and show
that if the degree of G is bounded by d, then SUBGRAPH ISOMORPHISM can be
solved in time f(d,k)n®® for some computable function f. In other words,
SUBGRAPH IsoMORPHISM is FPT when parameterized by both £ and d.

The idea of random separation is to color edges (vertices) randomly
such that the edges (vertices) of the solution are colored with one color
and the edges (vertices) that are adjacent to edges (vertices) of the
solution subgraph get colored with a different color. That is, we separate
the solution subgraph from its neighboring edges and vertices using a
random coloring.

In SUBGRAPH ISOMORPHISM, if we perform a successful coloring step,
then every connected component of the pattern graph H corresponds
to one connected component of the subgraph induced by the first color
in the colored graph G.

Let us now focus on the SUBGRAPH ISOMORPHISM problem. We first do
a sanity test and check whether the maximum degree of H is at most d; if
this is not the case, then we immediately report that the given instance is a
no-instance. Let us color independently every edge of G in one of two colors,
say red and blue (denoted by R and B), with probability % each. Denote
the obtained random coloring by x : E(G) — {R, B}. Suppose that (G, H)
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is a yes-instance. That is, there exists a subgraph H in G such that H is
isomorphic to H. R
Let I' denote the set of edges that are incident to some vertex of V(H),

but do not belong to E(H). We say that a coloring x is successful if both the
following two conditions hold:

1. every edge of E(H) is colored red, that is, E(H) C x~*(R); and
2. every edge of I" is colored blue, that is, I' C x~1(B).

Observe that E(H) and I' are disjoint. Thus, the two aforementioned condi-
tions are independent. Furthermore, since every edge of E(H)U T is incident
to a vertex of V(H), |[V(H)| = |V(H)| = k, and the maximum degree of G
is at most d, we obtain

|E(H)|+|I'| < d|V(H)| < dk.
Consequently, the probability that y is successful is at least

1 o1
2l BE(H)|+|r| — 24k

Let Gg be the subgraph of G containing only those edges that have been
colored red, that is, Ggr = (V(G),x ' (R)). The core observation now is as
follows: if x is successful, then Hisa subgraph of G as well and, moreover,
H consists of a number of connected components of G .

For simplicity assume first that H is connected. Thus, if x is successful,
then H is a connected component of Gg. Consequently, we can go over all
connected components C of G with exactly &k vertices and test if C is iso-
morphic to H. Such a single test can be done by brute force in time k!k°™), or
we can use a more involved algorithm for GRAPH ISOMORPHISM on bounded
degree graphs that runs in time k°(¢°24) on k-vertex graphs of maximum
degree d.

Let us now consider the general case when H is not necessarily connected.
Let Hy, Ho, ..., H, be the connected components of H, and let Cy,C5, ...,C,
be the connected components of Gg. We construct an auxiliary bipartite
graph B(H,GR), where every vertex corresponds to a connected component
H; or a connected component C}, and H; is adjacent to C} if they have at most
k vertices each and are isomorphic. Observe that the graph B(H,Ggr) can
be constructed in time k!n®® or in time k9@t )nOM) depending on the
GRAPH ISOMORPHISM algorithm we use, and the subgraph H isomorphic to
H corresponds to a matching in B(H, Gr) that saturates {H:, Ho, ..., Hp}.
(Note that every component of B(H,Gpg) is a complete bipartite graph, so
the matching can be found using a trivial algorithm.) Consequently, we can
check if there is a subgraph of G isomorphic to H that consists of a number
of connected components of G in time k!n®® or in time k©(dlogd)pO)
This completes the description the algorithm.
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We have proved that the probability that x is successful is at least 279,
Hence, to obtain a Monte Carlo algorithm with false negatives we repeat the
above procedure 2%* times, and obtain the following result:

Theorem 5.7. There exist Monte Carlo algorithms with false negatives that
solve the input SUBGRAPH ISOMORPHISM instance (G, H) in time 29 k!n© (1)
and in time 24k kOl )nO) " Here |V(G)| =n, |V(H)| = k, and the maa-
imum degree of G is bounded by d.

*5.4 A divide and color algorithm for LONGEST PATH

We now improve the running time bound of the algorithm for LONGEST
PATH, by using a different choice of coloring. The idea is inspired by the
“divide and conquer” approach: one of the basic algorithmic techniques to
design polynomial-time algorithms. In other words, we will see a technique
that is an amalgamation of divide and conquer and color coding. Recall that
for color coding we used k colors to make the subgraph we are seeking colorful.
A natural question is: Do we always need k colors, or in some cases can we
reduce the number of colors and hence the randomness used in the algorithm?
Some problems can naturally be decomposed into disjoint pieces and solutions
to individual pieces can be combined together to get the complete solution.
The idea of divide and color is to use randomization to separate the pieces.
For example, in the case of graph problems, we will randomly partition all
vertices (or edges) of a graph into the left and the right side, and show that
the structure we were looking for has been conveniently split between the
sides. We solve the problem recursively on a graph induced on left and right
sides separately and then combine them to get the structure we are searching
for.

Thus, the workflow of the algorithm is a bit different from the one in the
previous color coding example. We perform the partition step at every node
of the recursion tree, solving recursively the same problem in subinstances.
The leaves of the recursion tree correspond to trivial instances with k = O(1),
where no involved work is needed. On the other hand, the work needed to
glue the information obtained from subinstances to obtain a solution for the
current instance can be seen as a variant of dynamic programming.

The basic idea of the divide and color technique for the LONGEST PATH
problem is to randomly assign each vertex of the graph G to either a set
L (left) or another set R (right) with equal probability and thus obtain
a partitioning of the vertices of the input graph. By doing this, we hope
that there is a k-path P such that the first [£] vertices of P are in L
and the last L%J vertices of P are in R. Observe that for a fixed k-path
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SivMpLE-RANDOMIZED-PATHS(X, £)
Input: A subset X C V(G) and an integer £, 1 < ¢ <k
Output: Dx ¢

If £ = 1, then return ﬁx,g[’u, v] =T for all v € X, L otherwise.
Uniformly at random partition X into L and R.

D, [g]::SIMPLE—RANDOMIZED—PATHS(L, ]'%])
b2

D, ¢ ,:=SmupLE-RaNDOMIZED-PaTHS(R, | £])
R, 3] 2

oE W

Return ﬁX’Z = ﬁL,(gl > BR,L%j

Fig. 5.1: A simple algorithm to find a path on k vertices

this happens with probability exactly 27%. After the partitioning we
recurse on the two induced graphs G[L] and G[R].

However, the naive implementation of this scheme gives a success proba-
bility worse than 2=°*) and hence cannot be used to obtain an algorithm
with running time 2°®)n°M) and constant success probability. We need two
additional ideas to make this scheme work. First, we need to define the recur-
sion step in a way that it considers all possible pairs of endpoints for the path.
We present first an algorithm implementing this idea. Then we improve the
algorithm further by observing that we can do better than selecting a single
random partition in each recursion step and then repeating the whole al-
gorithm several times to increase the probability of success. Instead, in each
recursive step, we create several random partitions and make several recursive
calls.

In order to combine the subpaths obtained from G[L] and G[R], we need
more information than just one k-vertex path from each side. For a given
subset X C V(G), a number ¢ € {1,...,k} and a pair of vertices v and v
of X let Dy ¢[u,v] denote a Boolean value equal to true if and only if there
exists an ¢-vertex path from u to v in G[X]. Note that for a fixed subset X,
we can consider Dx ¢ as an |X| x |X| matrix. In what follows, we describe a
procedure SIMPLE-RANDOMIZED-PATHS(X, £) that computes a matrix ﬁxj.
The relation between 5X7g and Dy ¢ is the following. If lA)Xﬁ[u,v] is true
for some u,v € X, then so is Dx ¢[u,v]. The crux of the method will be in
ensuring that if Dy ¢[u,v] is true for some fixed u and v, then Dy ¢[u, ] is
also true with sufficiently high probability. Thus, we will get a one-sided error
Monte Carlo algorithm.

Given a partition (L, R) of X, an |L| x |L| matrix A, and an |R| x |R|
matrix B, we define A 1 B as an | X| x | X| Boolean matrix D. For every pair
of vertices u,v € X we have D[u,v] equal to true if and only if u € L, v € R
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and there is an edge zy € E(G[X]) such that € L, y € R and both Alu, x]
and By, v] are set to true. Then, (DL,(gw B DR,L%J)[U, v] is true if and only if

there exists an (-path P in G[X] from u to v, whose first [£] vertices belong
to L and the remaining |£] vertices belong to R. In particular, (DL,féT >
DR’ng)[u, v] implies Dx s[u,v]. The main observation is that if Dx ¢[u, v]
is true, then one can hope that the random choice of L and R partitions
the vertices of the path P correctly, i.e., so that (DL,(g] D DR7L§J)[“7 v]
is also true with some sufficiently large probability. Thus, we compute the

matrices DLJ%] and DR,L%J recursively by invoking SIMPLE-RANDOMIZED-

Parus(L, [£]) and SiMPLE-RANDOMIZED-PATHS(R, | £]), respectively, and

then return ﬁx,g =Dy ey ﬁR,L%J' For the base case in this recurrence,

we take £ = 1 and compute Dx ; = Dx ; directly from the definition.

Let us analyze the probability that, if Dx ¢[u,v] is true for some u,v €
V(G), then lA)X,g[u, v] is also true. For fixed ¢, by py denote the infinimum of
this probability for all graphs G, all sets X C V(G), and all vertices u,v € X.
If ¢ =1, then ﬁx,g = Dx ¢ and, consequently, p; = 1. Otherwise, let P be
any ¢-path in G[X] with endpoints u and v; we now analyze how the path P
can be “detected” by the algorithm. Let x be the [%W—th vertex on P (counting
from u), and let y be the successor of z on P. Moreover, let P, be the subpath
of P between u and x, inclusive, and let Pr be the subpath of P between y
and v, inclusive. Note that, P, has [£] vertices, Pr has | %] vertices and, as
t>1 5] <51 <

Observe that, with probability 27, all vertices of P are assigned to L
and all vertices of Pr are assigned to R. Moreover, if this is the case, then
both Dy rey [, 2] and Dg 4 [y, v] are true, with the paths Py, and Pg being

the respective witnesses. Consequently, lA)LJ%W [u, 2] and lA)R’ng [y, v] are both

true with probability at least PreipLL)- If this is the case, lA)X)g[u,v] is set
to true by the definition of the > product. Hence, we obtain the following
recursive bound:

De 2 2417[%71)[%]. (5.1)
By solving the recurrence (5.1)), we obtain p, = 2-9¢lg0)  To see this,

observe that, in the search for the path P for the value Dx ¢[u,v], there
are ¢ — 1 partitions that the algorithm SIMPLE-RANDOMIZED-PATHS needs
to find correctly: one partition of all ¢ vertices, two partitions of roughly
£/2 vertices, four partitions of roughly £/4 vertices, etc. That is, for each
i=0,1,...,|log#] — 1, the algorithm needs to make, roughly 2° times, a cor-
rect partition of roughly k/2! vertices. Consequently, the success probability
of the algorithm is given by

log £—1 1 2t
N _ 5-0O(Llogt)
re~ [1 (25/21') =2 e

=0
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FasTer-RanpoMIZED-PaTHs (X, £)

Input: A subset X C V(G) and an integer £, 1 < ¢ <k

Output: Dx 4

1. If £ =1, then return Dx ¢[v,v] = T for all v € X, L otherwise.

2. Set ﬁxj[u,v] to false for any u,v € X.
3. Repeat the following 2¢log(4k) times

(a )Unlformly at random partition X into L and R.

b) D :=FASTER-RANDOMIZED-PATHS(L,

£
(c)D £y :=FasTER-RANDOMIZED-PATHS(R, \_%J)
(

d)Compute DXZ = D L.rL] MDR,LgJ and update
]

ij[u, v] = Dx,g[u,v \ ﬁ’x olu, v] for every u,v € V(G).

4. Return EX’Z.

Fig. 5.2: A faster algorithm to find a path on k-vertices

Thus, to achieve a constant success probability, we need to run the algorithm
SMPLE-RANDOMIZED-PATHS(V (G), k) 20198 k) number of times, obtaining
a significantly worse running time bound than the one of Theorem

Let us now try to improve the running time of our algorithm. The main
idea is that instead of repeating the entire process 2°(1°8k) times, we split
the repetitions between the recursive calls. More precisely, we choose some
function f(¢, k) and, in each recursive call, we try not only one random parti-
tion of V(QG) into L and R, but f(¢, k) partitions, each chosen independently
at random. Recall that ¢ denotes the argument of the recursive call (the
length of paths we are currently looking for), whereas k denotes the argu-
ment of the root call to FASTER-RANDOMIZED-PATHS (the length of a path
we are looking for in the entire algorithm). In this manner, we increase the
running time of the algorithm, but at the same time we increase the success
probability. Let us now analyze what function f(¢,%k) guarantees constant
success probability.

Recall that a fixed partition of the vertices into L and R suits our needs
for recursion (i.e., correctly partitions the vertex set of one fixed ¢-path) with
probability 27¢. Hence, if we try f(¢,k) partitions chosen independently at
random, the probability that none of the f(¢, k) partitions suits our needs is

at most
1 f(&k)
<1 — 2é> . (5.2)

Fix a k-vertex path P witnessing that Dy (g i[u,v] is true for some fixed
u,v € V(G). The main observation is that, although the entire recursion tree
is huge — as we shall later see, it will be of size roughly 4* — we do not need
to be successful in all nodes of the recursion tree. First, we need to guess
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correctly at least one partition in the root node of the recursion tree. Then,
we may limit ourselves to the two recursive calls made for that one particular
correct, partition at the root node, and insist that in these two recursive calls
we guess at least one correct partition of the corresponding subpaths of length
[k/2] and |k/2]. If we proceed with such a reasoning up to the leaves of the
recursion, we infer that we need to guess correctly at least one partition at
exactly £ — 1 nodes. Consequently, we obtain constant success probability if
the value of the expression is at most ﬁ for every 1 < ¢ < k. To

achieve this bound, observe that we can choose f(£,k) = 2¢1log(4k). Indeed,
since 1 + x < e* for every real z,

1 2% 10g(4k) B 1 2° log(4k) _ 1 1
-5 < (6 g ) = oe@®) = 91

Since the probability space in the algorithm is quite complex, some readers
may find the argumentation in the previous paragraph too informal. For sake
of completeness, we provide a formal argumentation in the next lemma.

Lemma 5.8. If (G, k) is a yes instance and flt, k) = 21log(4k) (i.e.,
value of the expression is at most sy for every 1 < £ < k), then
with probability at least 5 there exists a pazr of vertices u,v € V(G) with
ﬁv(g))k[u, v] equal to true.

Proof. Consider a set X C V(G), vertices u,v € V(G), an integer 1 < /¢ < k,
and an {-vertex path P in G[X] with endpoints u and v. Clearly, P witnesses
that Dx ¢[u,v] = 1. Let p} denote the infinimum, for fixed k and ¢, over
all choices of G, X, u, and v such that Dx ¢[u,v] = 1, of the probability
that a call to FASTER-RANDOMIZED-PATHS(X, £) on instance (G, k) returns
Dx [u,v] = 1. Let s = ﬁ We prove by induction on ¢ that for every
1 < ¢ <k we have p§ > 1 — (¢ — 1)s; note that the lemma follows from such
a claim for £ = k. In the base case, observe that p¥ =1 as lA)X,l = Dx for
every X C V(G).

For the induction step, consider a path P in G[X], with ¢ > 1 vertices
and endpoints u and v. Observe that at the call FASTER-RANDOMIZED-
PATHS(X,¢) to set Dx ¢[u,v] = 1 it suffices to (a) at least once guess a
correct partition for the path P; and (b) for the first such correct partition
(L, R) compute IA)LM/Q] [u,z] = 1 and ﬁR,WQJ [y,v] = 1, where z is the
[£]-th vertex on P (counting from u), and y is the successor of z on P.
Consequently,

7> (1= 8)pfsymPlea

> (1—s)- (1= ([€/2] = 1)s) - (L —([£/2] —1)s)
>1—s—([€¢/2] = 1)s—([£/2] —1)s
=1—(L—1)s.
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Here, the second inequality follows from the inductive assumption, as ¢ > 1
implies [£/2] < [£/2] < X. O

For ease of presentation, the modified algorithm with improved error prob-
ability is given on Fig.

Let us now analyze the running time of the algorithm: due to the choice
of f(£,k) = 2‘log(4k), it is no longer polynomial. We have the following
recursive formula:

T(n, ¢, k) < 2°log(4k) (T <n m k) +T (n {gJ k)) +n°M . (5.3)

This solves to T'(n, ¢, k) = 4/T°+F)n0M) "and we obtain the following im-
provement upon Theorem [5.6

Theorem 5.9. There exists a randomized algorithm that, given ¢ LONGEST
PATH instance (G, k), in time 4to(k)nOM) either reports a failure or finds a
path on k vertices in G. Moreover, if the algorithm is given a yes-instance,
it returns a solution with a constant probability.

5.5 A chromatic coding algorithm for d-CLUSTERING

We now move our attention to edge modification problems, where we are to
modify the input graph G by adding or deleting a small number of edges to
obtain a desired property (i.e., make a graph belong to a prescribed graph
class). The idea of chromatic coding (or color and conquer, as it is sometimes
referred to in the literature) is to randomly color the vertices of the input
graph, with the hope that for every edge uv of the solution, i.e., the set of
edges that have to be added/deleted, the colors assigned to u and v will
differ. Once this random coloring step is successfully completed, the problem
instance seems to have a nice structure which can be exploited for algorithmic
applications. In particular, after a successful coloring, we can observe the
following.

1. All the solution edges go across color classes.

2. Therefore, no modification happens within a color class, hence the sub-
graph induced by each color class is already a member of the target graph
class.

While in some cases such properties significantly help us in resolving
the problem at hand, the crux of the chromatic coding approach is that,
in a yes-instance where the number of modifications in the solution is
bounded by k, the number of colors that guarantee the desired property
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with good probability is sublinear in k. Consequently, the algorithms
obtained via chromatic coding are usually subexponential, i.e., they run
in 20O time.

As we discuss in Chapter[T4] subexponential parameterized algorithms are
relatively rare.

Probability of a good coloring. Before we dive into a specific exemplary
problem for chromatic coding, let us formally analyze the random coloring
step — as it is generic for all algorithms using this approach. For a graph
G, we say that a coloring x : V(G) — [q] properly colors E(G) if for every
uv € E(G) we have x(u) # x(v).

Lemma 5.10. If the vertices of a simple graph G on k edges are colored in-
dependently and uniformly at random with [v/8k] colors, then the probability

that E(G) is properly colored is at least 2~V F*/2,

Proof. Let n = |V(G)|. Consider the sequence of vertices generated by the
following procedure.

1. Initialize Gy = G.

2. For every i = 1,2,...,n, repeat the following procedure. Let v; be a
vertex of minimum possible degree in G;_;. Remove v; from G;_1 to
obtain the graph G; (i.e., define G; := G;_1 — v;).

Observe that G,, is empty.
Let d; be the degree of v; in G;_;. Since we are dealing with simple graphs,
for every i = 1,...,n we have

di < [V(Giy)| - 1. (5.4)
Moreover, since v; is of minimum possible degree in G;_1, we have
2k =2|E(G)| > 2|E(Gi—1)| = d; - [V(Gi-1)|. (5.5)

By merging and we obtain 2k > d?, that is, d; < V2k.

Let us now consider the process of the random choice of the coloring x
by iteratively coloring the vertices in the order v,,v,_1,...,v1; each vertex
is colored independently and uniformly at random with one of ¢ := [v/8k]
colors. Let P; denote the event when the edge set E(G;) is properly colored.
Clearly, Pr(P,) =1 and P; C P; for j < i. Let us see what happens when we
color the vertex v;, 1 <14 < n. There are d; edges connecting v; with V(G,),
thus at most d; possible values of x(v;) would cause some edge v;v;, j > 1,
to be incorrectly colored (i.e., x(v;) = x(v;)). Consequently, we obtain
qg—d; —1_ % > 272di/q’ (56)

Pr(Pi_1 | ;) >
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where the last inequality follows from the estimate 1—x > 272" for 0 < z <
(recall that d; < v/2k, that is, % < %)

Observe that Py is the event when the edge set E(Gy) = E(G) is properly
colored. Moreover, >_""_, d; = k, as every edge is counted exactly once in the
sum > d;. By applying P;_; C P, and for every 1 < i < n we obtain:

1
2

PP(P()) = PI’(PQ ‘ Pl) Pr(Pl)
= PI'(P() ‘ Pl) PI‘(Pl | PQ) PI‘(PQ)

n

= Pr(P,) HPI'(Pz’—l | P;)

i=1

n
> H 9—2di/q _ 9—231_, di/q
i=1

— 9—2:k/[VBE] > 9-Vk/2.

In chromatic coding,

o we use O(Vk) colors, and
o the success probability is 2-°(V%) (Lemma [5.10).

Therefore, if the running time of the algorithm is single-exponential in
the number of colors, i.e., for ¢ colors it runs in time 299%™ then
20(Vk) repetitions give a 20(VR) RO time algorithm with constant er-
ror probability. Contrast this with color coding, where

e we use O(k) colors, and
e the success probability is 27 C®*).

Thus if the running time of the algorithm is single-exponential in the
number of colors, then 2°() repetitions give a 2°*F)nOM_time algo-
rithm with constant error probability.

The d-CLUSTERING problem. Armed with Lemma [5.10, we exemplify the
chromatic coding approach on the d-CLUSTERING problem.

A graph H is called an ¢-cluster graph if H has ¢ connected components,
and every connected component of H is a complete graph (clique). A graph
H is a cluster graph if it is an (-cluster graph for some ¢. For a graph G,
by adjacencies in G we mean pairs in (V(QG)). For a subset A C (V(QG)),
by modifying the adjacencies A in G we mean an operation G @ A that
creates a graph with vertex set V(G @ A) = V(G) and edge set E(G @ A) =
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(E(G)\ A)U (A\ E(G)). In other words, for any uv € A, if uv € E(G) then
we delete uv from G, and otherwise we add uv to G. In the d-CLUSTERING
problem, we are given an undirected graph G and a nonnegative integer k,
and we ask whether there exists a set A of at most k adjacencies in G such
that G @ A is a d-cluster graph. Such a set A is henceforth called a solution
to the instance (G, k). We remark here that the integer d is a part of the
problem definition, and is considered constant through the algorithm.

In the first step of our algorithm, given an instance (G, k) of d-CLUSTERING,
we pick ¢q := f\/87k] and randomly color the vertices of G with ¢ colors. Let
x : V(G) — [q] be the obtained coloring. We say that a set of adjacencies
A C (V(G) is properly colored if x properly colors the graph (V(G), A).
Lemma ensures that, if (G,k) is a yes-instance and A is a solution to
(G, k), A is properly colored with sufficiently high probability. Our goal now
is to show an algorithm that efficiently seeks for a properly colored solution.

Solving a colored instance. Assume we are given a d-CLUSTERING in-
stance (G, k) and a coloring y. We start with the following simple observa-
tion.

Lemma 5.11. Let G be a graph and x : V(G) — [q] be a coloring function.
Furthermore, let V; denote the vertices of G that are colored i. If there exists
a solution A in G that is properly colored by x, then for every V;, G[V;] is an
{-cluster graph for some £ < d .

Proof. Since every edge in A has endpoints of different colors, each of the
subgraphs G[V;] is an induced subgraph of G @ A. But G @ A is a d-cluster
graph, and every induced subgraph of a cluster graph is also a cluster graph.
Hence, G[V;] is a cluster graph with at most d components. a

We now proceed to the description of the algorithm. Suppose the given in-
stance has a properly colored solution A. Lemma implies that G[V;] is
an (-cluster graph for some ¢ < d and it remains so in G @ A. Therefore,
every component of G[V;] is a clique and it lies in one of the d components of
the graph G @ A; for each such component let us guess where it lies in G @ A.
Since the total number of components of the subgraphs G[V;] is bounded by
dq = d[v8k], we have at most d?[V8k] = 20(dlogdVk) choices. Finally, it
simply remains to check if the number of edges to be added and deleted to
be consistent with the guess is at most k. All we need to do is to add to A
any pair of adjacent vertices that are guessed to be in different components
of G ® A and any pair of nonadjacent vertices that are guessed to be in the
same component of G @ A. Hence, we obtain the following.

Lemma 5.12. Given an instance (G,k) of d-CLUSTERING with a coloring
X : V(G) = [[V8k]], we can test if there is a properly colored solution in
time 20(dlog dvk),,O(1)

Using a simple dynamic-programming approach one can show the following

(see Exercise [5.7).
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Lemma 5.13. Given an instance (G, k) of d-CLUSTERING with a coloring
X : V(G) — [[V8k]], we can test if there is a properly colored solution in
time 20(@Vk)p,O(1)

Combining Lemmas and we get that there is a randomized FPT
algorithm for d-CLUSTERING running in time 2°@VR 00 with a success
probability of at least 2-0WVk), Thus, repeating the above algorithm inde-
pendently 20(Vk) times we obtain a constant success probability. This leads
to the following theorem.

Theorem 5.14. There exists a randomized algorithm that, given an instance
(G,k) of d-CLUSTERING, in time 20@VR) O gjther reports a failure or
finds a solution to (G, k). Moreover, if the algorithm is given a yes-instance,
it returns a solution with a constant probability.

5.6 Derandomization

It turns out that all presented algorithms based on some variant of the color
coding technique can be efficiently derandomized. The goal of this section is
to show basic tools for such derandomization.

The basic idea of derandomization is as follows: instead of picking a
random coloring x : [n] — [k], we deterministically construct a family
F of functions f : [n] — [k] such that it is guaranteed that one of the
functions from F has the property that we hope to attain by choosing
a random coloring x.

Quite surprisingly, it turns out that such families F of small cardinal-
ity exist and can be constructed efficiently. In particular, if we estimated
the probability that a random coloring x satisfies the desired property by
1/f(k), the size of the corresponding family F is usually not much larger
than f(k)logn. Consequently, we are able to derandomize most of the algo-
rithms based on variants of the color coding technique with only small loss
of efficiency.

We limit ourselves only to formulating the appropriate results on construc-
tions of pseudorandom objects we need, and showing how to derandomize the
algorithms presented earlier in this section. The actual methods behind the
constructions, although very interesting, are beyond the scope of this book.



118 5 Randomized methods in parameterized algorithms

5.6.1 Basic pseudorandom objects

The basic pseudorandom object we need is called a splitter.

Definition 5.15. An (n, k, {)-splitter F is a family of functions from [n] to
[€] such that for every set S C [n] of size k there exists a function f € F that
splits S evenly. That is, for every 1 < 4,7 < £, |f~1(5)N S| and [f~1(5/)N S|
differ by at most 1.

One can view a function f in a splitter F as a coloring of [n] into £ colors;
the set S is split evenly if f uses on S each color roughly the same number
of times. Note that for ¢ > k, the notion of “splitting S evenly” reduces to f
being injective on S. Indeed, if [f~1(j) N S| > 2 for some j, then for every
§' we have |f~1(j/) N S| > 1 and hence |S| > [f~1([()NS|>£+1>|S], a
contradiction.

Our basic building block for derandomization is the following construction.

Theorem 5.16 ([15]). For any n,k > 1 one can construct an (n,k,k*)-
splitter of size k°W logn in time k°Mnlogn.

We emphasize here that the size of the splitter provided by Theorem [5.16]
is very small: it is polynomial in %, and depends only logarithmically on n
(Exercise asks you to show that this dependence on n is optimal.) This
is achieved by allowing the members of a splitter to have a relatively large
codomain, namely of size k2.

However, observe that the case of a much smaller codomain, namely ¢ = k,
directly corresponds to the color coding algorithm for LONGEST PATH: we
were coloring the vertex set of a graph G with & colors, hoping to be injective
on the vertex set of one fixed k-path in G. This special case of a splitter is
known as a perfect hash family.

Definition 5.17. An (n, k, k)-splitter is called an (n, k)-perfect hash family.

To obtain a perfect hash family, we need to allow the splitter to be signif-
icantly larger than in Theorem [5.16}

Theorem 5.18 ([372]). For anyn,k > 1 one can construct an (n, k)-perfect
hash family of size e*kC1°2%) log n in time e*kC1°8*) nlogn.

The proof of Theorem is derived by a composition of an (n, k, k?)-splitter
JF1 obtained from Theorem [5.16] with an explicit construction of a small
(k?, k, k)-splitter Fo, i.e., the resulting (n, k)-perfect hash family is F = {fy0
fi o f1 € Fi, fo € Fo}. (We denote by fy o fi the composition of the two
functions obtained by performing f; first and then f5, that is, (f2 0 f1)(z) =
fa(fi(=)).)

Observe that the actual size bound of Theorem [5.18]is very close to the
inverse of the probability that a random function [n] — [k] is injective on a
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given set S C [n] of size k (Lemma. Hence, if we replace repeating a color
coding algorithm e* times with iterating over all elements of an (n, k)-perfect
hash family of Theorem [5.18] we obtain a deterministic algorithm with only
a very slight increase in the running time bound.

For the random separation and divide and color algorithms, recall that we
needed to capture a specific partition either of the set I' U E(H), or of the
vertex set of a path P in question. Hence, we need a notion that is able to

capture all partitions of a given small subset of the universe.

Definition 5.19. An (n, k)-universal set is a family U of subsets of [n] such
that for any S C [n] of size k, the family {ANS : A € U} contains all 2¥
subsets of .S.

Similar to the case of perfect hash families, it is possible to obtain a uni-
versal set of size very close to the inverse of the probability that a random
subset of [n] has a desired intersection with a fixed set S C [n] of size k.

Theorem 5.20 ([872]). For any n,k > 1 one can construct an (n,k)-
universal set of size 28kC1°8K) logn in time 28kC 108k log n.

As in the case of Theorem [5.18] the proof of Theorem [5.20] boils down to
an explicit construction of a (k?, k)-universal set and composing it with a
splitter of Theorem [5.16

Finally, for the chromatic coding approach, we need to revise the coloring
step and observe that in fact we do not need the colors of vertices to be
independent in general; limited independence is sufficient. This brings us to
the following definition.

Definition 5.21 (k-wise independent). A family H,,  , of functions from
[n] to [g] is called a k-wise independent sample space if, for every k positions
1 <4y <iy < - <ip <n, and every tuple a € [¢]*, we have

Pr((f(ll)v f(ZQ)a cey f(Zk)) = Oé) = qik
where the function f € H,, 4 is chosen uniformly at random.

Fortunately, there are known constructions of k-wise independent sample
spaces of small size.

Theorem 5.22 (J10]). There exists a k-wise independent sample space Hy, i 4
of size O(n*) and it can be constructed efficiently in time linear in the output
size.

In the next section we will see that to derandomize chromatic coding it
suffices to modify the 2-independent sample space from Theorem [5.22
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5.6.2 Derandomization of algorithms based on variants
of color coding

We now show how to derandomize the algorithms from Section [5.2| using the
pseudorandom objects of Section For the sake of completeness, we first
repeat the more or less straightforward arguments for color coding and divide
and conquer. Then, we show a more involved argument for chromatic coding.

Color coding and LONGEST PATH. Let (G, k) be the input instance for
LONGEST PATH, where n = |V(G)|. Instead of taking a random coloring x
of V(G), we use Theorem to construct an (n, k)-perfect hash family F.
Then, for each f € F, we proceed as before, that is, we invoke the dynamic-
programming algorithm of Lemma [5.5] for the coloring x := f. The properties
of an (n, k)-perfect hash family F ensure that, if there exists a k-path P in
G, then there exists f € F that is injective on V(P) and, consequently, the
algorithm of Lemma [5.5] finds a colorful path for the coloring x := f. Hence,
we obtain the following deterministic algorithm.

Theorem 5.23. LONGEST PATH can be solved in time (2¢)*kC108*)n01) by
a deterministic algorithm.

We emphasize here that the almost-optimal size bound of Theorem [5.18
makes the running time of the algorithm of Theorem [5.23] only slightly worse
than that of Theorem

Divide and color and LONGEST PATH. Let (G, k) again be the input in-
stance for LONGEST PATH, where n = |V(G)|. We derandomize the proce-
dure FASTER-RANDOMIZED-PATHS(G, k) of Section as follows: instead
of taking f(k) random partitions of V(G), we use Theorem to compute
an (n, k)-universal set U and recurse on all partitions (L := A, R := V(G)\ A4)
for A € U. By the properties of a universal set, for every u,v € V(G) and
every k-path P from u to v in G, there exists A € U where ANV (P) consists
of the first [g] vertices of P. Consequently, there always exists at least one
recursive step where the path P is properly partitioned, and the algorithm
actually computes Dy (qy,r = Dv ()i

As for the running time bound, observe that the size bound of &/ promised
by Theorem [5.20] is very close to the choice f(k) = 2¥log(4k) we made in
Section [*5.4] Consequently, if we solve the appropriate variant of recursive
formula we obtain an algorithm with almost no increase in the running
time (in fact, all increase is hidden in the big-O notation).

Theorem 5.24. LONGEST PATH can be solved in time 45t°RF)pn00) py g
deterministic algorithm.

The derandomization of the random separation algorithm for SUBGRAPH
ISOMORPHISM in graphs of bounded degree, presented in Section [5.3] is
straightforward and postponed to Exercise [5.19
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5.6.2.1 A derandomized chromatic coding algorithm for
d-CLUSTERING

Let (G, k) be the input instance for d-CLUSTERING, where n = |V (G)|. Fol-
lowing previous examples, we would like to replace the random choice of a
coloring of V(G) into ¢ = O(Vk) colors with an iteration over some pseu-
dorandom object. Recall that in Section the essential property we were
hoping for was that the obtained coloring x properly colors the solution A.
This leads to the following definition:

Definition 5.25. A (n, k, q)-coloring family is a family F of functions from
[n] to [¢] with the following property: for every graph G on the vertex set
[n] with at most k edges, there exists a function f € F that properly colors
E(G).

Thus, to derandomize the algorithm of Theorem [5.14] we need to provide
an efficient way of constructing a small (n, k, ¢)-coloring family for some ¢ =
O(Vk). The basic idea is that a 2-wise independent sample space H, 1,
should be close to our needs for ¢ = ¢v/k and sufficiently large constant c.

As in the case of construction of an (n, k)-perfect hash family or an (n, k)-
universal set, it suffices to focus on the case n = k?; the general case can be
resolved by composing with an (n, k, k?)-splitter of Theorem Hence, we
start with the following explicit construction.

Lemma 5.26. For any k > 1, there ezists a (k%, k, 2[vV/k])-coloring family F
of size 20(Vk1o8k) that can be constructed in time linear in its size.

Proof. Denote q = f\/ﬂ We use Theorem to obtain a 2-wise indepen-
dent sample space G := Hyz2 5 ,. Note that the size of G is bounded by O(k*).
Recall that every element g € G is a function g : [k?] — [q].

We can now describe the required family F. For each ¢ € G and each
subset T C [k?] of size |T'| = g, we define a function f,r € F as follows.
Suppose T' = {41,992, ...,1q}, with i1 < iy < ... <i4. For 1 < j < g, we define
f(ij) =q+j,and f(i) = g(i) if i ¢ T. Note that f(i) € [2q] for any i € [k?],
and the size of F is at most

2
<kz )|g — 9O(VElogk)
q

To complete the proof we have to show that for every graph G on the set
of vertices [k?] with at most k edges, there is an f € F that properly colors
E(G). Fix such a graph G.

We use the probabilistic method, i.e., we choose T" and ¢ in the definition
of the function f,;r in a random way, so that f,r provides the required
coloring for G with positive probability, which implies the existence of the
desired function in F. The idea can be sketched as follows. The function g
is chosen at random in G, and is used to properly color all but at most ¢
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edges of E(G). The set T is chosen to contain at least one endpoint of each
of these edges, and the vertices in the set T will be re-colored by a unique
color that is used only once by f, 7. Then surely any edge incident to 1" will
have different colors on its endpoints. Using the properties of G we now prove
that with positive probability the number of edges uwv € E(G) for which
g(u) = g(v) (henceforth called monochromatic edges) is bounded by v/k.

Claim 5.27. If the vertices of G are colored by a function g chosen at random
from G, then the expected number of monochromatic edges is at most k/q <

Vk.

Proof. Fix an edge e in the graph G and j € [g]. As g maps the vertices in
a pairwise independent manner, the probability that both the endpoints of
e get mapped to j is precisely q%. There are g possibilities for j and hence

the probability that e is monochromatic is . Let X be the random variable
denoting the number of monochromatic edges. By linearity of expectation,
the expected value of X is at most & - % <Vk. ;

Returning to the proof of the lemma, observe that by the above claim, with
positive probability the number of monochromatic edges is upper bounded
by ¢ = [Vk]. Fix a g € G for which this holds and let T be a set of ¢ vertices
containing at least one endpoint of every monochromatic edge. Consider the
function fy 7. As mentioned above, f, 1 colors each of the vertices in 1" by
a unique color, which is used only once by f, 7, and hence we only need to
consider the coloring f, r restricted to G \ T'. However all edges of G\ T are
properly colored by g and f, 1 coincides with g on G\T'. Hence f, 1 properly
colors E(G), completing the proof of the lemma. O

Now we are ready to state the main result of this section.

Theorem 5.28. For any n, k > 1, there exists an (n, k, 2[Vk])-coloring fam-
ily F of size 20(Vklogk) logn that can be constructed in time 20(Vklogh)p, logn.

Proof. First, use Theorem to obtain an (n,k, k?)-splitter F;. Second,
use Lemma to obtain a (k?, k, [v/k])-coloring family F,. Finally, define
F:={faof1 : f1 €Fi,fo € Fa}. A direct check shows that F satisfies all
the desired properties. a

As announced at the beginning of this section, if we replace the random
choice of a coloring in Theorem with an iteration over the coloring fam-
ily given by Theorem [5.28] we obtain a deterministic subexponential time
algorithm for d-CLUSTERING.

Theorem 5.29. d-CLUSTERING can be solved in time 20(Vk(d+logk)) pO(1)

Note that for d = O(1), the derandomization step resulted in an additional
log k factor in the exponent, as compared to Theorem
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Exercises

5.1. In the TRIANGLE PackING problem, we are given an undirected graph G and a positive
integer k, and the objective is to test whether G has k-vertex disjoint triangles. Using color
coding show that the problem admits an algorithm with running time 20(*)pO(1),

5.2. In the TREE SUBGRAPH IsoMORPHISM, we are given an undirected graph G and a
tree T on k vertices, and the objective is to decide whether there exists a subgraph in G
that is isomorphic to T. Obtain a 2°(* )@MW _time algorithm for the problem using color
coding.

5.3. Consider the following problem: given an undirected graph G and positive integers k
and g, find a set X of at most k vertices such that G \ X has at least two components of
size at least ¢. Show that this problem can be solved in time 2€(a+k)pO(1),

5.4 (,;';) Assuming g > k, solve the problem from the previous problem in randomized
time ¢©® ) @M, Can you derandomize your algorithm without any significant loss in the
running time?

5.5 (&). Show formally the bound p, = 2-0O(logt) in the analysis of the procedure
SiMPLE-RANDOMIZED-PATHS(X, £) in Section That is, show that for sufficiently large
¢, pe = 27108 L gatisfies ([5.1)).

5.6 (£¥). Solve formally the recurrence ([5.3).
5.7. Prove Lemma[5.13l

5.8. Give a randomized FPT algorithm for the problem of deciding whether a given undi-
rected graph contains a cycle of length at least k. Your algorithm should have running
time ¢*n®®), Note that a graph may not have any cycle of length exactly k, but contain
a much longer cycle. Derandomize your algorithm using perfect hash families.

5.9 (&). Give a randomized FPT algorithm for the problem of deciding whether a given
directed graph contains a cycle of length at least k. Your algorithm should use color coding
with k2 colors, and have running time 20(:*),0(1) | Then improve the running time to
ECF)nO() by only using colors {1,...,k 4 1}, and assigning color k + 1 with probability
1-— 1%2 Finally, derandomize your algorithm using (n, k2, k*)-splitters.

5.10. In the SET SPLITTING problem, we are given a family of sets F over a universe U
and a positive integer k, and the goal is to test whether there exists a coloring of U with
two colors such that at least k sets in F are not monochromatic (that is, they contain
vertices of both colors).

1. Obtain a randomized FPT algorithm with running time 2 (|U| 4 | F[)O(M).
2. Using universal sets derandomize your algorithm and obtain a running time bound
4F(Ul+|Fpe.

5.11. In the ParTiaL VERTEX COVER problem, we are given an undirected graph G and
positive integers k and ¢, and the goal is to check whether there exists a set X C V(G)
of size at most k such that at least ¢ edges of G are incident to vertices on X. Obtain an
algorithm with running time 29 n®W) for the problem. (We show in Chapter that
this problem is W[1]-hard parameterized by the solution size k.)

5.12. In the PARTIAL DOMINATING SET problem, we are given an undirected graph G and
positive integers k and ¢, and the goal is to check whether there exists a set X C V(G)
of size at most k such that |[Ng[X]| > t (that is, X dominates at least ¢ vertices). Obtain
an algorithm with running time 2°()n®() for the problem. (We show in Chapterthat
this problem is W[1]-hard parameterized by the solution size k.)
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5.13. A graph H is called r-colorable if there exists a function x : V(H) — [r] such that
x(u) # x(v) for every uwv € E(H). Consider the following problem: given a perfect graph G
and integers k and r, check whether G admits an r-colorable induced subgraph on at least
k vertices. Show an algorithm for this problem with running time f(k, r)nO“). You could
use the fact that we can find a maximum independent set in perfect graphs in polynomial
time.

5.14. In the Pseupo AcuromaTic NUMBER problem, we are given an undirected graph G
and a positive integer k, and the goal is to check whether the vertices of G can be partitioned
into k groups such that each pair of groups is connected by at least one edge. Obtain a ran-
domized algorithm for Pseupo AcuromaTic NUMBER running in time 20(k? log k) y O(1)
5.15. Consider a slightly different approach for SuBgGrarPH IsomMORPHISM on graphs of
bounded degree, where we randomly color vertices (instead of edges) with two colors.

1. Show that this approach leads to a 2(d+DkE1n@(_time Monte Carlo algorithm with
false negatives.
2. Improve the dependency on d in the running time of the algorithm to dOR) 1n 0 (),

5.16. In the SpLiT EpGE DELETION problem, we are given an undirected graph G and a
positive integer k, and the objective is to test whether there exists a set S C E(G) of size
at most k such that G\ S is a split graph. Using chromatic coding show that the problem
admits a 20(VElogk) nO(1)_time algorithm.

5.17 (&). Show an algorithm for the SpLiT Epce DELETION problem (defined in the
previous exercise) with running time 20(VE)p0(1)

5.18 (£¥). Show that, for every n,¢ > 2, any (n,2,¢)-splitter needs to contain at least
log, n elements. In other words, show that the logn dependency in the size bound of
Theorem [5.16]is optimal.

5.19 (). Give a deterministic version of Theorem [5.7] using (n, k)-universal sets.

5.20 (&2). Give a deterministic version of the first algorithm developed in Exercise [5.15]
Your algorithm should run in time 2(d+1k+o(dk) 1, O0(1),

5.21 (8). Give a deterministic version of the second algorithm developed in Exercise
Your algorithm should run in time 2€(d(og d+logk)),O(1),

5.22 (£2). Show formally the running time bound of Theorem That is, formulate
and solve the corresponding variant of recurrence (5.3)).

5.23 (£&2). Complete the proof of Theorem verify that the size of the obtained family
F satisfies the promised bound, and that F is in fact a (n, k, 2[v/k])-coloring family.

Hints

The coloring step is exactly the same as in the LoNngEsT PaTH example: color the
vertices of G with k colors, hoping to make the subgraph in question colorful; let V; be
the set of vertices colored ¢. Then, design a dynamic-programming algorithm to find a
colorful subgraph isomorphic to 7. To this end, root T" at an arbitrary vertex and, for
every € V(T), denote by Ty the subtree of T rooted at z. By the dynamic-programming
approach, for every x € V(T), for every v € V(G), and for every set S of exactly |V (T%)|—1



5.6 Derandomization 125

colors, check whether there exists a colorful subgraph of G[J
Tz, where the vertex v corresponds to the root z.

ses Vi U {v}] isomorphic to

Randomly partition V(@) into two parts and hope that the vertices of the solution
X will be placed on the left, while a g-vertex connected subgraph of each of the two large
components of G \ X is placed on the right.

Use the same approach as in the previous problem, but play with probabilities: assign
each vertex to the left with probability 1/q, and to the right with the remaining probability.
To derandomize the algorithm, use a (n,2q + k, (2¢ + k)2)-splitter.

Prove the following observation: if a graph G contains a cycle of length at least 2k,
then, after contracting an arbitrary edge, it still contains a cycle of length at least k. Use
this, together with color coding, to get the algorithm.

Note that contracting a single edge may create a directed cycle even if there was none
before contraction. Prove that contracting all of the edges of a directed cycle C' cannot
turn a no-instance into a yes-instance. Prove that if G has a cycle of length at least ¢ before
contracting C, then G has a cycle of length at least ¢t/|C| after contracting C. Use this,
together with color coding, to get the algorithm.

To improve the running time from 20(k%) o kO(K) observe that if G contains a cycle
C' such that the k first vertices of C' are colored 1,2,...,k, and the remaining vertices are
colored k + 1, then we may find a cycle of length at least k in GG in polynomial time.

5.10| Fix a solution f : U — {1,2} and k sets Fi,Fb,...,F, € F that are not
monochromatic in the coloring f. For each set Fj, fix two elements a; 1, a;2 € F; such
that f(as,1) # f(ai2). Denote A := Ule{aiyl,aiyg}. Prove that £2(2/41=%) colorings
g: A — {1,2} satisfy g(a;,1) # g(a;2) for every 1 <14 < k.

5.11| Perform the color coding step with ¢ colors on the set E(G). Then, a colorful solution
is a set of at most k vertices that is adjacent to at least one edge of every color.

[B-12] Proceed in a way similar to the solution of the previous problem. Perform the color
coding step with ¢ colors on the set V(G). Then, a colorful solution is a set X of at most
k vertices such that Ng[X] contains at least one vertex of every color.

First, observe that, without loss of generality, we may look for an induced subgraph
with exactly k vertices. Second, show that a random coloring of G into r colors correctly
colors the subgraph in question with good probability. Finally, observe that, given a colored
instance, it suffices to find a maximum size independent set in each color class indepen-
dently.

m Prove that a random coloring of V(G) into k colors does the job with good probability.

5.15| Let H be a subgraph of G isomorphic to H. A coloring x : V(G) — {R,B} is
successful if V(H) C x~1(R) but Ng(V(H)) C x~1(B). Observe that |V(H)| = k and
‘Ng(V(I/‘\I)” < dk by the degree bound. The first point follows by using a brute-force
algorithm to check isomorphism in the construction of the graph B(H,Ggr) where Gg =
GheH(R)). R

For the second point, the key idea is to bias the probability: since our bound for |V (H)|
is much better than the one for \Ng(V(ﬁI))|, we may color independently every vertex red
with probability 1/d and blue with probability 1—1/d. In this manner, x is successful with
probability:

1\ v 1\ [N (v ()] 1\ %
- (1-2= >d k. (1-= =dk.2700),
d d = d
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5.16| Perform chromatic coding as in the case of d-CLusTERING. In the second phase, use
the fact that every n-vertex split graph has only O(n) possible partitions of the vertex set
into the clique and independent set parts. To obtain the 20 (Vklog k) pO(1) running time
bound, you need to either obtain a polynomial kernel for the problem (which is done in
Exercise , or wrap the algorithm with iterative compression.

5.17] The crucial observation is the following: every n-vertex graph on at most k edges
has at most 20(VR)p subgraphs being complete graphs. To see this claim, consider the
ordering vi,va,...,vn of V(G) defined in the proof of Lemma To identify a complete
subgraph H of G, it suffices to give (a) a vertex v; € V(H) of lowest possible index (n
choices), and (b) the set V(H)\ {v;} = Ng(v;) N V(G;) (2% = 20(VE) choices, as v; has
degree d; in V(G;_1) and d; = O(Vk)).

To utilize the aforementioned observation, proceed with iterative compression, adding
vertices one by one to the graph G. Assume we have a solution F' to SpriT EDGE DELETION
on (G — v, k) and we would like find a solution F’ to SpuiT Epge DeLETION on (G, k).
Furthermore, let V(G)\ {v} = CWI be (any) partition of the vertex set of the split graph
G — v — F into the clique and independent set parts. Observe that, if V(G) = C" W I’ is
(any) partition of the vertex set of the split graph G — F’ into the clique and independent
set parts, then I\ I’ induces a clique in G. Moreover, E(G[I]) C F and, consequently,
G[I] has at most k edges. Thus, there are 20(VE) . choices for I \ I’. Hence, we can guess
I\ I, as well as whether the new vertex v belongs to C’ or I’. With this information, it
is straightforward to deduce the remaining parts of C’ and I’.

Observe that if n > £/ in a (n, 2, £)-splitter F, then there are two elements a,b € [n]
such that for every f € F we have f(a) = f(b).

5.19] Observe that you need the correct partition of E(ﬁ) U I', which is of size at most
dk. Thus, you need a (|E(G)|, p)-universal set for every k < p < dk.

Observe that you need the correct partition of Ng [V(ﬁ)], which is of size at most
(d + 1)k. Thus, you need a (|V(G)|, p)-universal set for every k < p < (d + 1)k.

The biased separation, used in the solution for Exercise[5.15] can be usually efficiently
derandomized using a splitter from Theorem

Recall that we need to correctly separate Ng [V(ﬁ)], which is of size at most (d + 1)k.
We first guess p = \Ng[V(ﬁ)]| < (d + 1)k and we construct a (n,p,p?)-splitter F of
polynomial size. Then, we iterate through every function f € F and every set X C [p?] of
size exactly k and consider a coloring x : V(G) — {R, B} defined as: x(v) = R if and only
if f(v) € X. By the definition of a splitter, there exists f € F that is injective on Ng [V(f[)}
and we consider a set X = f(V(ﬁ)) For this choice of f and X, the coloring x is successful.
Finally, note that the size of F is polynomial, whereas there are (p;) = 20(k(log d+log k))
choices for the set X.

Intuitively, in this approach we use a generic splitter whose size is negligible in the
running time, and then we mimic the bias of the separation by guessing a small set in the
(largish) codomain of the splitter.
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who introduced the method of color coding and obtained the first algorithm with running
time 20RO for the problem. The divide and color algorithm decribed in this chapter
was obtained independently by Kneis, Molle, Richter and Rossmanith [299] and Chen, Lu,
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Chapter 6
Miscellaneous

In this chapter, we gather a few algorithmic tools
that we feel are important, but do not fit into any of
the previous chapters. First, we discuss erponential-
time dynamic-programming algorithms that consider
all subsets of a certain set when defining the subprob-
lems. Second, we introduce the INTEGER LINEAR PRO-
GRAMMING FEASIBILITY problem, formulate the clas-
sical results on how to solve it in the case of a bounded
number of variables, and show an example of its ap-
plication in fized-parameter algorithms. Finally, we
discuss the algorithmic implications of the Robertson-
Seymour theorem on graph minors.

The chapter consists of three independent sections, each tackling a dif-
ferent tool in parameterized algorithms. Since a full exposition of, say, the
algorithmic applications of the graph minors project would constitute a large
volume in itself, we have decided to give only a glimpse of the topic in each
of the three sections.

In Section [6.1] we present a common theme in many exponential-time
algorithms: a dynamic-programming algorithm, where the subproblems are
defined by considering all subsets of a certain set of elements (and hence
the number of subproblems and the running time are exponential in the
number of elements). As a first example, we give a simple 2!V!(|U| +|F])©™1)-
time dynamic-programming algorithm for SET COVER with a family of sets
F over a universe U. Then, we obtain a 3/5In®M algorithm for STEINER
TREE, where K is the set of terminal vertices. Using additional ideas, we will
improve the running time of this algorithm in Section

Section [6.2] introduces yet another tool to design fixed-parameter algo-
rithms, namely integer linear programs. In turns out that many NP-hard
problems can be expressed in the language of INTEGER LINEAR PROGRAM-
MING. For example, in Section we have seen how a VERTEX COVER in-
stance can be encoded as an INTEGER LINEAR PROGRAMMING instance.

129
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In 1983, Lenstra showed that INTEGER LINEAR PROGRAMMING is fixed-
parameter tractable when parameterized by the dimension of the space, i.e.,
the number of variables. (Naturally, Lenstra did not use the terminology of
fixed-parameter tractability, as it was introduced much later.) Thus, Lenstra’s
result gives us a very general tool for proving fixed-parameter tractability of
various problems. Note that a similar phenomenon happens in the world of
polynomial-time algorithms, where a large number of tractable problems, in-
cluding the problems of finding a shortest path or a maximum flow, can be
represented in the language of LINEAR PROGRAMMING. In Section [6.2] we
state the fastest known algorithm for INTEGER LINEAR PROGRAMMING, and
exemplify its usage on the IMBALANCE problem.

In Section [6.3] we move to the theory of graph minors. The Graph Minors
project of Robertson and Seymour, developed in the last three decades, re-
sulted not only in achieving its main goal — proving Wagner’s conjecture,
asserting that the class of all graphs is well-quasi-ordered by the minor re-
lation — but also flourished with other tools, techniques and insights that
turned out to have plenty of algorithmic implications. In this chapter, we re-
strict ourselves only to the implications of the Robertson-Seymour theorem
in parameterized complexity, and we show how theorems from Graph Minors
immediately imply fixed-parameter tractability of such problems as detecting
the Euler genus of a graph. Robertson-Seymour theory also gives us pretext
to discuss the notion of nonuniform fixed-parameter algorithms. We remark
here that the next chapter, Chapter [7] is entirely devoted to the algorithmic
usage of the notion of treewidth, a different offspring of the Graph Minors
project.

6.1 Dynamic programming over subsets

In this section, we give two examples of dynamic-programming algorithms
over families of sets. Our examples are SET COVER and STEINER TREE.

6.1.1 SET COVER

Let F be a family of sets over a universe U. For a subfamily 7 C F and a
subset U’ C U, we say that F’' covers U’ if every element of U’ belongs to
some set of 7', that is, U’ C |J F'. In the SET COVER problem, we are given
a family of sets F over a universe U and a positive integer k, and the task
is to check whether there exists a subfamily F' C F of size at most k such
that F’ covers U. We give an algorithm for SET COVER that runs in time
2UI(|U| 4 |F)°M. In fact, this algorithm does not use the value of k, and
finds the minimum possible cardinality of a family 7' C F that covers U.
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Theorem 6.1. Given a SET COVER instance (U, F, k), the minimum pos-
sible size of a subfamily F' C F that covers U can be found in time
2UI(JU] + |FOW.

Proof. Let F = {IF, Fs,...,Fiz}. We define the dynamic-programming ta-
ble as follows: for every subset X C U and for every integer 0 < j < |F|, we
define T'[X, j] as the minimum possible size of a subset 7' C {Fy, F>, ..., F;}
that covers X. (Henceforth, we call such a family F’ a wvalid candidate for
the entry T'[X,j].) If no such subset 7' exists (i.e., if X ¢ (JI_, F;), then
T[X, j| = +oo.

In our dynamic-programming algorithm, we compute all 2/Y!(|F| + 1) val-
ues T[X,j]. To achieve this goal, we need to show (a) base cases, in our
case values T[X, j] for j = 0; (b) recursive computations, in our case how to
compute the value T'[X, j] knowing values T[X’, j'] for j’ < j.

For the base case, observe that T'[(}, 0] = 0 while T[X, 0] = +oo for X # 0.

For the recursive computations, let X C U and 0 < j < |F|; we show that

T[X,jl =min(T[X,j — 1,1+ T[X \ F;,j — 1]). (6.1)

We prove by showing inequalities in both directions. In one direction,
let 7/ C {Fy,Fs,...,F;} be a family of minimum size that covers X. We
distinguish two cases. If F; ¢ F’, then note that ' is also a valid candidate
for the entry T'[X,j — 1] (i.e., 7/ C {F1, Fs,...,Fj_1} and F' covers X). If
F; € F/,then F'\{F}} is a valid candidate for the entry T[X \ F}, j—1]. In the
other direction, observe that any valid candidate F” for the entry T[X,j — 1]
is also a valid candidate for T[X, j] and, moreover, for every valid candidate
F' for T[X \ Fj, j — 1], the family 7/ U {F}} is a valid candidate for T[X, j].
This finishes the proof of .

By using (6.1), we compute all values T'[X, j] for X C U and 0 < j < |F|
within the promised time bound. Finally, observe that T[U, | F|] is the answer
we are looking for: the minimum size of a family 7' C {F}, I, ..., Fig} = F
that covers U. O

We remark that, although the dynamic-programming algorithm of Theo-
rem is very simple, we suspect that the exponential dependency on |U]|,
that is, the term 2!Vl is optimal. However, there is no known reduction that
supports this claim with the Strong Exponential Time Hypothesis (discussed

in Chapter .

6.1.2 STEINER TREE

Let G be an undirected graph on n vertices and K C V(G) be a set of termi-
nals. A Steiner tree for K in G is a connected subgraph H of G containing
K, that is, K C V(H). As we will always look for a Steiner tree of minimum
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possible size or weight, without loss of generality, we may assume that we
focus only on subgraphs H of G that are trees. The vertices of V(H) \ K
are called Steiner vertices of H. In the (weighted) STEINER TREE problem,
we are given an undirected graph G, a weight function w: E(G) — R+ and
a subset of terminals K C V(G), and the goal is to find a Steiner tree H for
K in G whose weight w(H) = }__c ;) W(e) is minimized. Observe that if
the graph G is unweighted (i.e., w(e) = 1 for every e € E(G)), then we in
fact optimize the number of edges of H, and we may equivalently optimize
the number of Steiner vertices of H.

For a pair of vertices u,v € V(G), by dist(u,v) we denote the cost of a
shortest path between u and v in G (i.e., a path of minimum total weight).
Let us remind the reader that, for any two vertices u, v, the value dist(u,v) is
computable in polynomial time, say by making use of Dijkstra’s algorithm.

The goal of this section is to design a dynamic-programming algorithm for
STEINER TREE with running time 3/51n°1) | where n = [V(G).

We first perform some preprocessing steps. First, assume |K| > 1, as oth-
erwise the input instance is trivial. Second, without loss of generality, we
may assume that G is connected: a Steiner tree for K exists in G only if all
terminals of K belong to the same connected component of G and, if this is
the case, then we may focus only on this particular connected component.
This assumption ensures that, whenever we talk about some minimum weight
Steiner tree or a shortest path, such a tree or path exists in G (i.e., we do
not minimize over an empty set). Third, we may assume that each terminal
in K is of degree exactly 1 in G and its sole neighbor is not a terminal. To
achieve this property, for every terminal ¢ € K, we attach a new neighbor ¢’
of degree 1, that is, we create a new vertex ¢’ and an edge ' of some fixed
weight, say 1. Observe that, if |K| > 1, then the Steiner trees in the original
graph are in one-to-one correspondence with the Steiner trees in the modified
graphs.

We start with defining a table for dynamic programming. For every
nonempty subset D C K and every vertex v € V(G) \ K, let T[D,v] be
the minimum possible weight of a Steiner tree for D U {v} in G.

The intuitive idea is as follows: for every subset of terminals D, and
for every vertex v € V(G) \ K, we consider the possibility that in the
optimal Steiner tree H for K, there is a subtree of H that contains
D and is attached to the rest of the tree H through the vertex v. For
|D| > 1, such a subtree decomposes into two smaller subtrees rooted at
some vertex u (possibly © = v), and a shortest path between v and w.
We are able to build such subtrees for larger and larger sets D through
the dynamic-programming algorithm, filling up the table T'[D, v].

The base case for computing the values T[D,v] is where |D| = 1. Observe
that, if D = {t}, then a Steiner tree of minimum weight for D U {v} = {v,t}



6.1 Dynamic programming over subsets 133

is a shortest path between v and ¢ in the graph G. Consequently, we can fill
in T[{t},v] = dist(¢,v) for every t € K and v € V(G) \ K.

In the next lemma, we show a recursive formula for computing the values
T[D,v] for larger sets D.

Lemma 6.2. For every D C K of size at least 2, and every v € V(G) \ K,
the following holds

T[D,v] = ue‘r/r(liC%\K {T[D',u]+ T[D\ D', u] + dist(v,u)} . (6.2)
04D'CD

Proof. We prove by showing inequalities in both directions.

In one direction, fix v € V(G) and @ # D’ C D. Let H; be the tree
witnessing the value T[D’, u], that is, H; is a Steiner tree for D' U {u} in G
of minimum possible weight. Similarly, define Hy for the value T[D \ D’ u].
Moreover, let P be a shortest path between v and uw in G. Observe that
H; U Hy U P is a connected subgraph of G that contains D U {v} and is of
weight

w(H1UHsUP) < w(Hy)+w(Hz)+w(P) =T[D',u]l+T[D\D’, u]+dist(v, u).
Thus

T[D,v] < min {T[D',u]+T[D\ D' u] + dist(v,u)}.

T ueV(G)\K
0#£D'CD

In the opposite direction, let H be a Steiner tree for DU {v} in G of mini-
mum possible weight. Let us root the tree H in the vertex v, and let ug be the
vertex of H that has at least two children and, among such vertices, is closest
to the root. An existence of such a vertex follows from the assumptions that
|D| > 2 and that every terminal vertex is of degree 1. Moreover, since every
terminal of K is of degree 1 in G, we have ug ¢ K. Let u; be an arbitrarily
chosen child of ug in the tree H. We decompose H into the following three
edge-disjoint subgraphs:

1. P is the path between ug and v in H;

2. Hj is the subtree of H rooted at u;, together with the edge ugu;

3. Hj consists of the remaining edges of H, that is, the entire subtree of H
rooted at ug, except for the descendants of u; (that are contained in Hy).

See Fig.

Let D' = V(H;)N K be the terminals in the tree H;. Since every terminal
is of degree 1 in G, we have D \ D' = V(Hy) N K. Observe that, as H is of
minimum possible weight, D’ # (), as otherwise H \ H; is a Steiner tree for
D U {v} in G. Similarly, we have D’ C D as otherwise H \ Hs is a Steiner
tree for D U {v} in G. Furthermore, note that from the optimality of H it
follows that w(Hy) = T[D’, ugl, w(Hsy) = T[D \ D', ug] and, moreover, P is
a shortest path between ug and v. Consequently,
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uo
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H1 H2

Fig. 6.1: Decomposition of H

T[D,v]=w(H) =T[D',uo) +T[D\ D', uo] + dist(v, ug)
> min  {T[D,u] +T[D\ D', u] + dist (v, u)} .
2 omin AT ul+ TIDA D', ul + dist(v, u)}
0#D'CD

This finishes the proof of the lemma. O

With the insight of Lemma[6.2] we can now prove the main result of this
section.

Theorem 6.3. STEINER TREE can be solved in time 3/KIn®@)

Proof. Let (G, w, K) be an instance of STEINER TREE after the preprocessing
steps have been performed. We compute all values of T[D, v] in the increasing
order of the cardinality of the set D. As discussed earlier, in the base case we
have T'[{t},v] = dist(¢,v) for every t € K and v € V(G) \ K. For larger sets
D, we compute T[D,v] using ; note that in this formula we use values
of T|D',u) and T[D \ D', u], and both D" and D\ D’ are proper subsets of
D. In this manner, a fixed value 7D, v] can be computed in time 2/°n®M),
Consequently, all values T'[D,v] are computed in time

| K]

DI LRSS <|f_(|>2jno<1> _ 3IK1,001)
= N

veV(G)\K DCK

Finally, observe that, if the preprocessing steps have been performed, then
any Steiner tree for K in V(G) needs to contain at least one Steiner point
and, consequently, the minimum possible weight of such a Steiner tree equals
minvev(g)\K T[K, U]. O

We will see in Section [I0.1.2|how the result of Theorem [6.3] can be improved.
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6.2 INTEGER LINEAR PROGRAMMING

In this section, we take a closer look at parameterized complexity of INTEGER
LINEAR PROGRAMMING.

We start with some definitions. In the INTEGER LINEAR PROGRAMMING
FEASIBILITY problem, the input consists of p variables x1,2,...,2p, and a
set of m inequalities of the following form:

a1 171 + a1,2%2 +...+ a1,pTp S b1

a21%1 + a22T2 +...+ a2y < by

Am 121 + Gm2T2+ ...+ G pZp < by

where every coefficient a; ; and b; is required to be an integer. The task is to
check whether one can choose integer values for every variable x; so that all
inequalities are satisfiable.

Equivalently, one may look at an INTEGER LINEAR PROGRAMMING FEA-
SIBILITY instance as a matrix A € Z™*P and a vector b € Z™; the task is
to check whether there exists a vector x € ZP such that Az < b. We assume
that an input of INTEGER LINEAR PROGRAMMING FEASIBILITY is given in
binary and thus the size of the input is the number of bits in its binary
representation.

In typical applications, when we want to solve a concrete algorithmic prob-
lem by formulating it as INTEGER LINEAR PROGRAMMING FEASIBILITY, we
may assume that the absolute values of the variables in the solution are poly-
nomially bounded by the size n of the instance we want to solve. Therefore, if
the INTEGER LINEAR PROGRAMMING FEASIBILITY instance has p variables,
then we may solve it in time n®® by brute force. The main technical tool
that we use in this section is the fact that INTEGER LINEAR PROGRAMMING
FEASIBILITY is fixed-parameter tractable parameterized by the number of
variables. This opens up the possibility of obtaining FPT results by trans-
lating the problem into an instance of INTEGER LINEAR PROGRAMMING
FEASIBILITY with bounded number of variables.

Theorem 6.4 ([280],]319],]215]). An INTEGER LINEAR PROGRAMMING
FEASIBILITY instance of size L with p variables can be solved using O(p2'5p+°(p)-
L) arithmetic operations and space polynomial in L.

In other words, Theorem says that INTEGER LINEAR PROGRAMMING
FeasiBILITY is fixed-parameter tractable when parameterized by p, with a
relatively good (slightly super-exponential) dependence on the parameter and
linear dependence on the input size.

In some applications, it is more convenient to work with an optimiza-
tion version of the INTEGER LINEAR PROGRAMMING FEASIBILITY problem,
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namely INTEGER LINEAR PROGRAMMING. Although this problem has been
already briefly discussed in Section [2.5] let us now recall its definition. In the
INTEGER LINEAR PROGRAMMING problem, apart from the standard input
for INTEGER LINEAR PROGRAMMING FEASIBILITY (i.e., a matrix A € Z™*P
and a vector b € Z™) we are given a vector ¢ € ZP, and our goal is to find
a vector x € ZP satisfying all the aforementioned inequalities (i.e., Az < b)
that minimizes the objective function c - x (the scalar product of ¢ and x).

Using binary search, it is easy to derive an algorithm for INTEGER LINEAR
PROGRAMMING using Theorem (6.4

Theorem 6.5. An INTEGER LINEAR PROGRAMMING instance of size L with
p variables can be solved using

O(p2~5p+a(p) - (L +log M) log(M,M.))

arithmetic operations and space polynomial in L + log M, , where M, is an
upper bound on the absolute value a variable can take in a solution, and M.
is the largest absolute value of a coefficient in the vector c.

Proof. Observe that the absolute value of the objective function is at most
pM_ . M, as long as the variables have absolute values at most M,.. We perform
a binary search to find the minimum value of the objective function. That is,
for a fixed integer threshold —pM, M, <t < pM_,M,., we add an inequality
cx <t to the system Az < b and apply the algorithm of Theorem to
the obtained INTEGER LINEAR PROGRAMMING FEASIBILITY instance. The
instance has size O(L + plog(pM,M.)) = O(p(L + log M,)), and hence each
application of Theorem runs in time O(p*°P+e®) . (L + log M,)). Con-
sequently, we are able to find an optimum value ¢y of the objective function
within the promised bound on the running time. Moreover, any solution to
the INTEGER LINEAR PROGRAMMING FEASIBILITY instance consisting of the
system Az < b with an additional inequality cx < ty is an optimal solution
to the input INTEGER LINEAR PROGRAMMING instance. a

6.2.1 The example of IMBALANCE

Now we exemplify the usage of Theorem [6.5] on the IMBALANCE problem.
In order to define the problem itself, we need to introduce some no-
tation. Let G be an n-vertex undirected graph. An ordering of V(G) is
any bijective function 7: V(G) — {1,2,...,n}. For v € V(G), we define
L;(v) ={ue Nw) : 7(u) < w(v)} and R(v) = {u € N(v) : w(u) >
m(v)} = N(w) \ Lr(v). Thus L,(v) is the set of vertices preceding v, and
R (v) is the set of vertices succeeding v in w. The imbalance at vertex v is
defined as it (v) = ||Lx(v)| — |Rx(v)||, and the imbalance of the ordering ©

equals o(m) =3 ey () tr (V).
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In the IMBALANCE problem, parameterized by the vertex cover number
of a graph, we are given a graph G together with its vertex cover X of size
k, and the task is to find an ordering 7 of V(G) minimizing its imbalance.
The parameter is k, the size of the provided vertex cover, as opposed to —
maybe more natural after most of the previous examples in this book —
the parameterization by solution size (the value of the objective function,
the imbalance of the ordering in question). We remark that there is an FPT
algorithm for IMBALANCE parameterized by the imbalance of the ordering,
but such an algorithm is not the goal of this section.

The IMBALANCE problem, parameterized by the vertex cover number, falls
into the wide topic of so-called structural parameterizations. Here, instead of
taking the most natural “solution size” parameterization (as was the case, e.g.,
for VERTEX COVER or FEEDBACK VERTEX SET in previous chapters), we
pick as a parameter some structural measure of the instance (most usually,
a graph) at hand. In parameterized complexity, the choice of the parame-
ter comes from the application: we would like to solve efficiently instances
for which the parameter is small. Hence, studying a computational problem
both using the “solution size” parameterization and different structural pa-
rameters, such as the vertex cover number, refines our understanding of the
matter by considering complementary angles: we design efficient algorithms
for different classes of input instances. Furthermore, from a theoretical point
of view, different parameterizations often offer different interesting insights
into the studied problem. This is yet another example of flexibility provided
by parameterized complexity in choosing parameters.

We remark that this is not the only example of structural parameterization
in this book. The entire Chapter[7]is devoted to treewidth, an important graph
parameter that measures the resemblance of a graph to a tree. Moreover, in
Section we show an example of kernelization lower bound for CLIQUE,
parameterized by the vertex cover number.

We remark that in the case of parameterization by the vertex cover num-
ber, it is not necessary that we require that some vertex cover is provided
along with the input graph, but instead we can compute a 2-approximation
of a minimum vertex cover. In this manner, we obtain a parameter that is
at most twice as large. Another approach would be to use an FPT algorithm
to compute a vertex cover of size at most k. However, in the case of several
other structural parameters of the input graph (e.g., the size of a dominating
set) we do not have a good approximation or FPT algorithm to fall back on,
and hence, in this book, we define all problems with structural parameters
by insisting on providing the promised structure in the input.

We now show how to apply Theorem [6.5]in order to give an FPT algorithm
for IMBALANCE parameterized by the size of the provided vertex cover of G.

We are looking for an ordering 7 for which ¢(r) is minimized. In order to do
this, we loop over all possible orderings (bijections) mx: X — {1,2,...,k} of
the vertex cover X and, for every such ordering mx, we find the best ordering
7 of V(G) that agrees with mx: We say that m and 7x agree if for all u,v € X
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we have that 7mx (u) < mx(v) if and only of m(u) < 7(v). In other words, the
relative ordering 7 imposes on X is precisely mx. Thus, at a cost of a factor of
k! in the running time, we can assume that there exists an optimal ordering 7
such that X = {uy,ug,...,ur} and w(u1) < w(ug) < ... < w(ug). For every
0<: < k, we define XZ‘ = {uhug,. . .,ui}.

Because X is a vertex cover, the set I = V(G) \ X is independent. We
associate a type with each vertex in I as follows.

Definition 6.6. The type of a vertex v € I is the set N(v) C X. For a type
S C X, the set I(S) is the set of all vertices in I of type S.

Notice that the number of different types does not exceed the number of
subsets of X, which is 2%.

Observe that every vertex of I is either mapped between two vertices of
X, to the left of uy, or to the right of u; by an optimal ordering w. We say
that a vertex v € I is at location 0 if m(v) < m(u1) and at location i if i is
the largest integer such that m(u;) < m(v). The set of vertices that are at
location 7 is denoted by L;. We define the inner order of m at location ¢ to
be the restriction of 7w to L;.

The task of finding an optimal permutation can be divided into two parts.
The first part is to partition the set I into Ly,..., L, while the second part
consists of finding an optimal inner order at all locations. One should notice
that partitioning I into Lo, ..., Ly amounts to deciding how many vertices of
each type are at location 7 for each i. Moreover, observe that the second part
of the task, namely permuting the inner order of 7 at location 4, in fact does
not change the imbalance at any single vertex. This is due to the fact that
the vertices of I, and thus all vertices at location 4, are pairwise nonadjacent.
Hence, the inner orders are in fact irrelevant and finding the optimal ordering
of the vertices thus reduces to the first part of finding the right partition of
I into Ly, ..., L;. Our goal for the rest of this section is to phrase this task
as an INTEGER LINEAR PROGRAMMING instance.

For a type S and location i, we let z% be a variable that encodes the
number of vertices of type S that are at location i. Also, for every vertex
u; in X, we introduce a variable y; that represents the lower bound on the
imbalance of u;.

Let us now describe the inequalities. First, in order to represent a feasible
permutation, all the variables must be nonnegative. Second, the variables x
have to be consistent with the fact that we have |I(S)| vertices of type S,
that is, Y.z, = |I1(S)| for every type S.

For every vertex u; of the vertex cover X, we let e; = |N(u;) N X, 1] —
|N(u;) N (X \ X;)|. For every u; € X we have a constraint

1—1 k
yi>lei+ Y Y b= el ] (6.3)
j=i

SCX \j=0
u; €S
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Finally, for every type S and location i, let the constant z% be equal to the
imbalance at a vertex of type S if it is placed at location i. That is,

25 =[S N X = 1SN (X\ X))l

We are now ready to formulate our INTEGER LINEAR PROGRAMMING in-
stance.

k k
min Zyi + Z Z zfgxfg
i=1 i=0 SCX
k
sty al=[I1(S)] VS C X
1=0

i—1

k
ineiJrZ ZIJS—ZxJS Vi<i<k
j=i

SCX \j=0
u; €S
1—1 . k ]
yiz—ei—z ng—zxf Vi<i<k
SCX \j=0 j=i
s >0 VO<i<kSCX.

A few remarks are in place. First, since is not a linear constraint, we have
represented it as two constraints in the INTEGER LINEAR PROGRAMMING
instance.

Second, formally, in the integer linear program above, we do not require y;
to be exactly the imbalance at u;, but to be at least this imbalance. However,
the minimization criterion forces y; to be actually equal to the imbalance at
Uj.

Finally, observe that the maximum possible value of a variable xZS is less
than n, the maximum possible value of a variable y; in an optimal solution
(where the inequality is in fact an equality) is less than n, and the maxi-
mum absolute value of a coefficient 2% is, again, less than n. Consequently, an
application of Theorem [6.5 on our INTEGER LINEAR PROGRAMMING instance
runs in 227" n°W time, and we obtain the following result.

Theorem 6.7. The IMBALANCE problem, parameterized by the size of a pro-
vided vertex cover of the input graph, is fived-parameter tractable.
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6.3 Graph minors and the Robertson-Seymour theorem

In this section, we discuss the minor relation in graphs and the algorithmic
usage of the Robertson-Seymour theorem.

For a graph G and an edge uv € G, we define the operation of contracting
edge uv as follows: we delete vertices u and v from G, and add a new vertex
wyy adjacent to (Ng(u) U Ng(v)) \ {u,v} (i.e., to all vertices that u or v
was adjacent to in ). Observe that contraction defined as above does not
introduce any multiple edges or loops (note that we used a different definition
when treating FEEDBACK VERTEX SET in Section [3.3). Let G/uv be the
graph obtained by contracting edge uv in G.

We say that a graph H is a minor of G, denoted by H <,, G, if H
can be obtained from some subgraph of G by a series of edge contractions.
Equivalently, we may say that H is a minor of G if H can be obtained from
G itself by a series of edge deletions, edge contractions and vertex deletions.

There is also a different definition that in some cases is more convenient:
H is a minor of G if for every h € V(H) we can assign a nonempty branch
set Vi, C V(G), such that

(a) G[V4] is connected;

(b) for different g, h € V(H), the branch sets V, and V}, are disjoint; and

(c) for every gh € E(H) there exists an edge vyv, € E(G) such that v, € V,
and v, € Vj,.

Such a family (Vi)nev () of branch sets is called a minor model of H in G.
Exercise [6.12] asks the reader to check the equivalence of the aforementioned
definitions.

The minor relation in some sense preserves the topological properties of a
graph, for example, whether a graph is a planar graph.

Let us now clarify what we mean by a planar graph, or a graph embedded
into the plane. First, instead of embedding into the plane we will equivalently
embed our graphs into a sphere: in this manner, we do not distinguish unnec-
essarily the outer face of the embedding. Formally, an embedding of a graph
G into a sphere is a mapping that maps (a) injectively each vertex of G into a
point of the sphere, and (b) each edge uv of G into a Jordan curve connecting
the images of v and v, such that the curves are pairwise disjoint (except for
the endpoints) and do not pass through any other image of a vertex. A face
is a connected component of the complement of the image of G in the sphere;
if G is connected, each face is homeomorphic to an open disc. A planar graph
is a graph that admits an embedding into a sphere, and a plane graph is a
planar graph together with one fixed embedding.

It is easy to observe the following.

Proposition 6.8. A minor of a planar graph is also planar.
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Indeed, removing edges and vertices surely cannot make a planar graph non-
planar and it is not difficult to modify a planar embedding to express the
contraction of an edge.

A statement similar to Proposition [6.8 holds when we generalize planar
graphs to graphs drawn on some other, more complicated, but fixed surface.
In this chapter, we discuss graphs drawn on surfaces only very briefly and
informally, as they only serve here as a demonstration of certain concepts in
the theory of graph minors. It is well known that a graph can be drawn on
the plane if and only if it can be drawn on the sphere. However, there are
graphs that can be drawn on the torus (the doughnut-shaped surfaced shown
on Fig. , but not on the sphere — the clique Kj5 is such a graph. One
way to construct surfaces is to add some number of “handles” to a sphere: for
example, we may consider the torus as a sphere with a handle attached to it.
There are other, more weird surfaces, such as the Klein bottle or the projective
plane, that cannot be obtained this way and where we need to introduce an
orientation-changing construction called a cross-cap, along with handles.
We do not go into the exact definitions and details of these constructions,
all we want to state here is that if a graph G is embeddable in a surface
XY/, and H is a minor of G, then H is embeddable on X' as well. For readers
interested in Topological Graph Theory, we provide references to sources in
the bibliographic notes at the end of this chapter.

It will be very important for some of the applications that certain struc-
tural parameters are monotone with respect to taking minors: for example,
the minimum size of a vertex cover or feedback vertex set is not increased
when taking the minor of a graph. The proof of the following proposition is
left as an exercise (Exercise .

Proposition 6.9. Let G be a graph, let X C V(G) be a vertex cover (feedback
vertex set) of G, and let H be a minor of G. Then there exists a vertex cover
(feedback vertex set) of H of size at most | X]|.
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Another example of a graph property that cannot increase if we go to a minor
of a graph is treewidth, discussed in Chapter [7]

Although the minor relation is already interesting in itself, the main thrust
to its usability is given by the following seminal result of Robertson and
Seymour.

Theorem 6.10 (Robertson and Seymour). The class of all graphs is
well-quasi-ordered by the minor relation. That is, in any infinite family of
graphs, there are two graphs such that one is a minor of the other.

The statement of the Robertson-Seymour theorem above is sometimes re-
ferred to in the literature as the Wagner’s conjecture or the graph minors
theorem. In what follows, we stick to the name Robertson-Seymour theorem.
As we shall see in the rest of this section, the Robertson-Seymour theorem is
a very powerful tool in parameterized complexity.

Consider a class of graphs G. We say that G is closed under taking minors
or minor-closed if for every G € G and every minor H of G, the graph H
belongs to G as well. For example, by Proposition the class of planar
graphs, or more generally, graphs embeddable on a surface of fixed genus g,
is minor-closed. Proposition asserts that, for every fixed k, the class of
graphs admitting a vertex cover of size at most k or a feedback vertex set of
size k, is minor-closed.

We observe now the following crucial corollary of the Robertson-Seymour
theorem.

Corollary 6.11. For every minor-closed graph class G, there exists a finite
set Forb(G) of graphs with the following property: for every graph G, graph G
belongs to G if and only if there does not exist a minor of G that is isomorphic
to a member of Forb(G).

Proof. Define Forb(G) to be the set of minor-minimal elements of the comple-
ment of G: a graph G is in Forb(G) if G is not in G, but every proper minor
of G is in G. We keep only one representative of every isomorphism class.
By definition, Forb(G) has the desired property; it remains to check only its
finiteness. However, if Forb(G) is infinite, then the Robertson-Seymour the-
orem implies that there exists H, G € Forb(G) such that H <,,, G. However,
then G is not minimal with respect to the minor relation, contradicting the
definition of Forb(G). O

The family Forb(G) is often called the family of minimal forbidden minors
for G.

For example, by Wagner’s theorem, a graph is planar if and only if it does
not contain K5 and K33 as a minor. Thus for planar graphs Corollary
is not so interesting. However, already for the class of graphs embeddable in
a torus (see Fig the situation is not that clear. By Corollary we
know that the family of forbidden minors for this class is finite, but their
number can be enormous and it is not clear how we can find them efficiently.
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Currently, more than 16,000 graphs are known from the family of forbidden
minors for the class of graphs embeddable in the torus. More generally, for
graphs embeddable on a surface of genus g, i.e., a sphere with g handles,
we only know that the number of forbidden minimal minors for this class of
graphs is bounded by some function of g. Similarly, by Corollary for
every fixed k, the class of graphs admitting a vertex cover of size at most &
has a forbidden family of minimal minors of size f(k) for some function f.

It is important to note here that the proof of Corollary [6.1] is noncon-
structive, i.e., while we know that set Forb(G) is finite, we do not know how
to construct it and we do not know how to estimate its size.

We need one more algorithmic result of the Graph Minors project.

Theorem 6.12 (Robertson and Seymour). There exists a computable
function f and an algorithm that, for given graphs H and G, checks in time
F(H)|V(G)|]? whether H <, G.

Corollary with Theorem [6.12] implies that every minor-closed class
can be recognized in polynomial time.

Theorem 6.13. Let G be a minor-closed graph class. There is a constant cg
depending on the class G only, such that for any n-vertex graph G, deciding
whether G € G can be done in time cg -3,

Proof. By Corollary there exists a family Forb(G) that characterizes G
and whose size and the sizes of its elements are at most some constant cg
depending only on G. Consider the following algorithm: iterate through all
graphs H € Forb(G) and use Theorem to check if H <, G. If this is
the case for at least one graph H € Forb(G), then G ¢ G and we answer that
G ¢ G. Otherwise, by the properties of Forb(G), we have that G € G.

Let us bound the running time of the algorithm. By Theorem for
every H € Forb(G), we check whether H is a minor of G in time f(H) -
n® < f(cg) - n®. The size of Forb(G) does not exceed ¢y, and by putting
cg = cg - f(cg), we conclude the proof of the theorem. O

Let us now apply Theorem to VERTEX COVER. Let (G, k) be a VER-
TEX COVER instance. By Proposition the class Gy of graphs admitting
a vertex cover of size at most & is minor-closed. Thus by Theorem for
every k > 0, there is an algorithm deciding if a graph G is in G, in time ¢y, -n?,
where constant ¢; depends only Gi, that is ¢, = f(k) for some function f.
Have we just shown another proof that VERTEX COVER is fixed-parameter
tractable?

Well, not exactly. Given only the integer k, we do not know the family
Forb(Gy) — Corollary only asserts its existence and finiteness — and
the knowledge of this family or at least its size is essential for further steps. In
general, it seems hard to get around the problem of obtaining the forbidden
minors: for example, it was shown by Fellows and Langston in [I84] that,
given only oracle access to a membership test for a minor-closed class G,
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one cannot compute Forb(G). However, we have at least proved the following
statement, which is somewhat weaker than fixed-parameter tractability. It
should be noted that we obtained this result without any algorithmic insight
into the problem: we only used the general tool Theorem [6.13] and the fact
that the vertex cover number does not increase when taking minors.

Corollary 6.14. For every k, there is a constant cx and an algorithm that,
given an n-vertex graph G, checks in time ci, - n® if G admits a vertex cover
of size at most k.

Corollary asserts the existence of a family of algorithms, one for every
k, and the forbidden minors Forb(Gy) are hard-coded into the algorithm for
the parameter k. Such a conclusion as in Corollary is called nonuniform
fized-parameter tractability. .

Definition 6.15. We say that a parameterized problem @ is nonuniformly
fized-parameter tractable if there exists a constant «, a function f: N — N,
and a collection of algorithms (Ag)ken such that the following holds. For
every k € N and every input z, the algorithm A, accepts input z if and only
if (z,k) is a yes-instance of @, and the running time of 4; on x is at most

f(R)|a]*.

The above notion should be contrasted with our definition of fixed-parameter
tractability, where we require that there exists a single algorithm that takes
k on input and works for all values of k. To emphasize the difference, our
“standard” FPT algorithms are sometimes called (strongly) uniform.

Let us now generalize Corollary [6.14] to a wider set of problems. Let G
be a graph class. Many interesting problems can be defined as special cases
of the following generic G VERTEX DELETION problem: for a given graph
G and integer k, does there exist a set X of at most k vertices of G such
that G — X € G? For example, when G is the class of graphs without edges,
G VERTEX DELETION is VERTEX COVER. When G is the class of forests, G
VERTEX DELETION is FEEDBACK VERTEX SET, and when G is planar, G
VERTEX DELETION is PLANAR VERTEX DELETION, that is, the problem of
whether a given graph G can be turned into a planar graph by deleting at
most k vertices (we study this problem in detail in Section [F7.8).

From a graph-theoretical point of view, the following formulation seems
more natural. For a graph class G and an integer k, let G + kv be a class of
graphs defined as follows:

GeG+kv ifandonlyif IX CV(G): (|X|<k)A(G—-X €G).

That is, G + kv are exactly these graphs G for which (G, k) is a yes-instance
to G VERTEX DELETION. For this reason, the G VERTEX DELETION problem
is sometimes called G + kv RECOGNITION.

Proposition generalizes to the following statement (see Exercise :
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Proposition 6.16. For every minor-closed graph class G and for every inte-
ger k, the class G + kv is also minor-closed.

Let us note that the only property of VERTEX COVER we have used to
derive Corollary is that the class of graphs with vertex cover at most &
is minor-closed. Thus we have the following theorem.

Theorem 6.17. For every minor-closed class G, the problem G VERTEX

DELETION is nonuniformly fived-parameter tractable, when parameterized by
k.

Although the notion of nonuniform fixed-parameter tractability evidently
captures more problems than the standard, uniform oneE we believe that
there is no significant difference among the “interesting” problems. In par-
ticular, it is very likely that the theory of fixed-parameter intractability and
W/1]-hardness described in Chapter [L3| excludes also nonuniform FPT algo-
rithms. That is, our conjecture is that no W[1]-hard problem is nonuniformly
fixed-parameter tractable.

Thus while Theorem [6.13] does not bring us to an FPT algorithm, it is
very convenient to use it to make an “educated guess” that a problem
is FPT.

In many cases, after using Theorem to establish that a problem is
nonuniformly FPT and hence very likely to be uniformly FPT as well, we
can use other, more concrete techniques to prove that the problem is indeed
uniformly FPT. For example, VERTEX COVER and FEEDBACK VERTEX SET
are special cases of G VERTEX DELETION and thus by Theorem [6.17] are
nonuniformly FPT. On the other hand, we already saw FPT algorithms for
these problems in Chapter [3| For PLANAR VERTEX DELETION, we give an
FPT algorithm in Section Another example is the GRAPH GENUS prob-
lem: for a given graph G and integer k decide whether G can be embedded
in a surface of genus k, i.e. a surface with k£ handles. The class of graphs
of genus at most k is minor-closed and thus GRAPH GENUS is nonuniformly
fixed-parameter tractable. An explicit FPT algorithm for GRAPH GENUS has
been given by Mohar [365]. There are also some general techniques for mak-
ing the algorithms resulting from Theorem uniform, but they work only
for a limited set of problems [183] [5].

In Exercises [6.16] and [6.17] we give two other examples of usages of
the Robertson-Seymour theorem: PLANAR DIAMETER IMPROVEMENT (does
graph G have a planar supergraph with diameter at most k?) and LINKLESS
EMBEDDING (does graph G have an embedding in three-dimensional space

1 The standard examples for P vs. P/ poly apply here: any undecidable unary language,
parameterized by the length of the input, does not admit a (uniform) FPT algorithm (since
it is undecidable), but there is a trivial nonuniform one, as every algorithm Ay, is supposed
to handle only one input.
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such that at most k cycles can link pairwise?). In both cases, the existence
of a uniform FPT algorithm remains open.

Exercises

6.1 (£). Using dynamic programming over the subsets, obtain an algorithm for Curo-
maric NUMBER on n-vertex graphs running in time 37n©(1),

6.2 (£). Using dynamic-programming over subsets, show that the HamiLroniaN CYCLE
problem on an n-vertex graph can be solved in time 2np0),

6.3. For an n X n matrix A = (a;,;)1<s,j<n, the permanent of A is the value perm(A) =
Yo [1i=1 @i (i), where the sum extends over all permutations o of {1,2,...,n}. (This is
very similar to the definition of the determinant, but we do not have here the 1 or —1 factor
depending on the number of inversions in the permutation.) Using dynamic programming
over subsets, show how to compute the permanent of a given n X n matrix in time 2np0),

6.4. Using dynamic programming over subsets, show that DIREcTED FEEDBACK ARC SET
on n-vertex graphs can be solved in time 2npOM),

6.5 (). Let G be an undirected bipartite graph on n vertices. Show that we can find a
minimum size dominating set in G in time 27/2p01),

6.6 (&). Show that ConnECTED VERTEX COVER admits an algorithm with running time
6*n°M) . You might need to use an algorithm for STriNER TREE of Theorem [6.3

6.7. Given a directed graph G, a set of terminals K C V(G) and a root r € V(G),
DireEcTED STEINER TREE asks for a directed tree rooted at r such that every terminal
in K is reachable from r on the tree. Obtain a 3/KIn®M)_time algorithm for DirrCTED
STEINER TREE.

6.8 (). Consider the following restricted variant of STRINER TREE: assume G is a plane
graph, and all terminals lie on the infinite face of G. Show how to enhance the dynamic-
programming algorithm of Theorem [6.3] to run in polynomial time in this restricted case.

6.9 (&). Improve the algorithm of Theorem so that the factor in the running time
bound that depends on the size of the input graph equals the running time of a single-
source shortest-path algorithm. That is, obtain a 31| K| (n + m)-time algorithm for
unweighted graphs and 3/5!|K|9(M (nlogn 4+ m)-time for the general, weighted case.

In the next two exercises we revisit the CLosEsT STRING problem, which was already
considered in Chapter Recall that in this problem we are given a set of k strings
x1,Z2,...,x, over alphabet X, each of length L, and an integer d. The task is to find
a string y of length L such that the Hamming distance between y and x; is at most d, for
every 1 <4 < k. In Section [3.5] we designed an FPT algorithm for this problem parameter-
ized by d, while in Exercise you were asked to design an algorithm that is faster when
the alphabet size is small. This time, we consider the parameterization by k, the number
of strings.

6.10 (). Prove that CLOSEST STRING is fixed-parameter tractable when parameterized
by k and |X|.
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6.11 (). Refine the solution of the previous exercise to show that CLOSEST STRING is
fixed-parameter tractable when parameterized by k only.

6.12 (£Z). Prove that the two definitions of the minor relation, mentioned in Section [6.3]
are equivalent.

6.13 (£Z). Show that vertex cover and feedback vertex set are minor-closed parameters.
In other words, for any minor H of graph G, if G admits a vertex cover (feedback vertex
set) of size at most k, then H admits a vertex cover (feedback vertex set) of size at most
k as well.

6.14. Prove Proposition [6.16

6.15 (&). In the Max Lear SUuBTREE problem, we are given a graph G together with an
integer k and the question is whether there is a subtree T' of G with at least k leaves.

1. Show that (G, k) is a yes-instance if and only if K; ; (a graph with a center vertex
connected to k degree-one vertices) is a minor of G.

2. Deduce that Max LearF SUBTREE is nonuniformly fixed-parameter tractable, when
parameterized by k.

6.16. In the PLANAR DIAMETER IMPROVEMENT problem, the input consists of a planar
graph G and an integer k, and the task is to check if there exists a supergraph of G that
is still planar, and at the same time has diameter at most k.

1. Prove that this problem is nonuniformly fixed-parameter tractable, when parameter-
ized by k.

2. Show that it suffices to consider supergraphs only G’ of G with V(G') = V(G); that
is, it only makes sense to add edges to GG, and adding new vertices does not help.

6.17. Let G be a graph embedded into R3 (that is, every vertex of G corresponds to some
point in R3, and every edge of G' corresponds to some sufficiently regular curve connecting
its endpoints; the edges/vertices do not intersect unless it is imposed by the definition). Two
vertex-disjoint cycles C and C5 are said to be linked in this embedding if the corresponding
closed curves in R3 cannot be separated by a continuous deformation (i.e., they look like
two consecutive links of a chain). A family C of pairwise vertex-disjoint cycles is pairwise
linked if every two distinct cycles from the family are linked. In the LinkLESs EMBEDDING
problem, given a graph G and an integer k, we ask whether there exists an embedding of
G into R? such that any pairwise linked family of cycles in G has size at most k. Prove
that this problem is nonuniformly fixed-parameter tractable, when parameterized by k.

6.18. In the Face CovVER problem, we are given a planar graph G and an integer k, and
the task is to check if there exists a planar embedding of G and a set of at most k faces
in this embedding, such that every vertex of G lies on one of the chosen faces. Prove that
this problem is nonuniformly fixed-parameter tractable, when parameterized by k.

6.19. In the CycLE PackING problem the input is a graph G with an integer k and the
task is to determine whether there exist k cycles in G that are pairwise vertex disjoint.
Prove that this problem is nonuniformly fixed-parameter tractable, when parameterized
by k.
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Hints

In the dynamic-programming table, for every X C V(G), define T[X] to be the
minimum possible number of colors needed to color G[X]. For the base case, observe that
T[X] =1 if and only if X is a nonempty independent set in G.

Fix a vertex s € V(G). In the dynamic-programming table, for every set X C V(G)
that contains s, and every ¢ € V(G) \ X, define T[X,t] to be a Boolean value indicating
whether there exists in G a simple path with endpoints s and ¢ and vertex set X U {¢t}.

In the dynamic-programming table, for every X C {1,2,...,n}, define T[X] to be the
permanent of the | X| X |X| matrix (a;,;j)1<i<| x| jex-

In the dynamic-programming table, for every X C V/(G), define T[X] to be the
minimum possible number of edges of G[X] whose deletion makes G[X] acyclic. For a
recursive formula, for fixed set X, consider all possible choices of a vertex v € X that
is the last vertex in the topological ordering of G[X] after the solution edges have been
deleted.

Let A and B be the bipartition sides of the input bipartite graph G and without loss
of generality assume |A| < |B|, in particular, |A] < n/2. In general, perform a dynamic-
programming algorithm like that of Theorem for SET CoVER instance with universe
A and set family {Ng(b) : b € B}. However, to ensure that the side B is dominated,
and at the same time allow some vertices of A to be chosen into a dominating set, change
the base case as follows. Let D be a minimum size dominating set in G and observe that
B\ Ng(Dn A) C D. For every possible guess of Dy C A for the set D N A, we would
like to allow in the dynamic-programming routine an option of taking D4 U (B\ Ng(Da))
into the solution; from the point of view of the SET CovER instance with universe A, this
translates to covering D4 U Ng(B \ Ng(Da)) at cost |Da| + |B\ Ng(Da)|. To achieve
this goal, we compute the values T'[X, 0] as follows.

1. First set T[X,0] = +oo for every X C A.

2. For every Dy C A, define X = Dy U Ng(B \ Ng(Da)) and set T[X,0] :=
min(T[X, 0], [Dal + B\ Na(Da)).

3. For every X C A in the decreasing order of the size of X, and for every v € A\ X,
set T'[X,0] := min(T'[X, 0], T[X U {v},0]).

In this manner, T[X, 0] equals a minimum possible size of a set Dy U (B \ Ng(D4)) that
dominates X, over all D4 C A.

Observe that ConNECTED VERTEX COVER can be seen as a two-stage problem: first
choose some vertex cover K of the input graph G, of size at most k, and then connect
K using minimum size Steiner tree for K. Furthermore, note that the straightforward
branching algorithm for VeErTEX CovEer runs in 28n©() time and in fact outputs all
inclusion-wise minimal vertex covers of G of size at most k.

The main observation is as follows: it suffices to consider only sets D C K that consist
of a number of terminals that appear consecutively on the infinite face of the input graph.
In this way, there are only O(|K|?) sets D to consider.

The main idea is to perform the computations in a different order: for a fixed choice
of sets D’ and D, we would like to compute

T'[D,D’,v] = in T[D, T[D\ D/, distg (v, w).
[ V] oot [D',w] +T[D\ D', w] + diste (v, w)

for all vertices v € V(G) \ K using a single run of a single source shortest path algorithm.
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To this end, create an auxiliary graph G’ as follows: create a new vertex s and for every
w € V(G)\ K create an edge sw of weight T[D’,w] 4+ T[D \ D’,w]. Observe that for every
v € V(G), we have distg/(s,v) = T'[D, D', v]. Hence, to compute the values T'[D, D', v]
for all vertices v, it suffices to run a single source shortest path algorithm from s in the
graph G'.

To obtain linear time in the unweighted case, observe that in this case all weights of
the edges sw are positive integers of order O(n), and still a single source shortest path
algorithm can be performed in linear time.

‘We shall use integer linear programming, so as to avoid confusion with variables we

use notation si, sa,..., sy for the input strings.
For every position 1 < j < L, let s;[j] be the j-th letter of the string s;, and let
st = (s1[4],s2[4],---,skli]) € Z* be the tuple at position j. Define an INTEGER LINEAR

PROGRAMMING instance using the following variables: for every s € X* and for every
o € X, the variable zs - counts the number of positions j such that s’ = s and, in the
solution s, the letter at position j is exactly o.

Improve the approach of the previous exercise in the following way: we say that two
tuples s,s’ € X* are equivalent if, for every 1 < 4,7’ < k, we have s(i) = s(i) if and only
if /(i) = s’(¢'). Show that the variables corresponding to equivalent tuples can be merged
(you need to be careful here with the index o) and you can have only k(%) variables in
your INTEGER LINEAR PROGRAMMING instance.

Let G € G+ kv and let X C V(G) be such that | X| < k and G — X € G. Let H be
a minor of G, and let (Vi )nev () be a minor model of H in G. Define Y = {h € V(H)
X NVy #0}. Clearly, |Y] < |X| < k. Let Z =,y Vi € V(G). Observe that G — Z is a
subgraph of G — X. Moreover, (V,)nhev(m)\y 18 @ minor model of H —Y in G — Z. Since
G is minor-closed, we have H — Y € G and, consequently, H € G + kv.

The main observation is that edge contraction cannot increase a diameter. Deduce
from this fact that, for every fixed k, the class of graphs G for which (G, k) is a yes-instance
to PLANAR DIAMETER IMPROVEMENT is minor-closed.

Again, show that for fixed k, the class of graphs G for which (G, k) is a yes-instance
is minor-closed.

Bibliographic notes

The algorithm for Ser Cover is taken from [I98]. The optimality of this algorithm is
discussed in [T12]. For a comprehensive discussion on exponential-time algorithms for com-
puting the permanent, we refer the reader to [38] (cf. Exercise [6.3). The algorithm for
STEINER TREE is the classical Dreyfus-Wagner algorithm from [I59]. The first improve-
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The fact that the Dreyfus-Wagner algorithm becomes polynomial if we restrict ourselves
to planar graphs with all terminals on the infinite face (Exercise was first observed by
Erickson, Monma, and Veinott [168]. The algorithm of Exercise is from [245]. After a
long line of improvements [245], 367, [187, [367), [34], [118], the currently fastest algorithm for
CONNECTED VERTEX COVER running in deterministic time 2kn2M) is due to Cygan [111],
and is conjectured to be optimal [112].

Lenstra [319] showed that INTEGER LINEAR PrROGRAMMING FEasiBILITY is FPT with
running time doubly exponential in p. Later, Kannan [280] provided an algorithm for
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INTEGER LINEAR PROGRAMMING FEASIBILITY running in time p@(P), The algorithm uses
Minkowski’s Convex Body theorem and other results from the geometry of numbers. A
bottleneck in this algorithm was that it required space exponential in p. Using the method
of simultaneous Diophantine approximation, Frank and Tardos [215] describe preprocessing
techniques, using which it is shown that Lenstra’s and Kannan’s algorithms can be made to
run in polynomial space. They also slightly improve the running time of the algorithm. For
our purposes, we use this algorithm. Later, a randomized algorithm for INTEGER LINEAR
ProGgraMMING FEasiBILITY was provided by Clarkson; we refer the reader to [95] for
further details. The result of Lenstra was extended by Khachiyan and Porkolab [288] to
semidefinite integer programming.

An FPT algorithm for IMBALANCE parameterized by the objective function (the imbal-
ance of the ordering in question) is given in [327]. The algorithm for IMBALANCE parame-
terized by vertex cover (Theorem is from [I85]. A similar approach works for several
other vertex ordering problems.

The Graph Minors project of Robertson and Seymour spans over 23 papers, most of
the work published in the Journal of Combinatorial Theory Ser. B. A nice overview of
this project is contained in the book of Diestel [138]. Interestingly enough, while it was
not the main goal of the project, many of the tools developed by Robertson and Seymour
to settle Wagner’s conjecture are used for a very broad class of algorithmic problems.
Kuratowski’s theorem is the classical theorem in graph theory [314]. It was proved originally
for topological minors; the statement in terms of minors is due to Wagner [428]. The lower
bound on the size of a partial list of graph minors for toroidal graphs is taken from the
work of Gagarin, Myrvold, and Chambers [222]. We recommend the book of Mohar and
Thomas [366] for more background on topological graph theory.

To circumvent the discussed issue of nonuniformity, Fellows and Langston |33}, [I80}, [182],
1871, 183}, 184] have developed some general techniques using self-reducibility and a graph-
theoretic generalization of the Myhill-Nerode theorem of formal language theory [183], to
algorithmically construct the set of forbidden minors along the way. Thereby, for some of
the considered problems they proved uniform fixed-parameter tractability.

The (uniform) fixed-parameter algorithm for GrarPu GENUS was given by Mohar [365].
There are several constructive algorithms for PLanar VERTEx DELETION [358] 285] 277],
with the current fastest algorithm by Jansen, Lokshtanov, and Saurabh [277] having run-
ning time k©®)n,

An embedding of a graph G into R3 is called linkless if every two vertex-disjoint cycles
of G can be separated from each other by a continuous transformation (i.e., they do not
look like two consecutive links of a chain). In the LiNkLESS EMBEDDING problem, defined
in Exercise[6.17] the graphs admitting a linkless embedding are yes-instances for k < 1. An
explicit family of forbidden subgraphs for graphs admitting a linkless embedding was first
conjectured by Sachs, and proved to be correct by Robertson, Seymour and Thomas [404].
There has been substantial work (e.g., [287] and [267]) to understand the computational
complexity of finding a linkless embedding of a graph.



Chapter 7
Treewidth

The treewidth of a graph is one of the most frequently
used tools in parameterized algorithms. Intuitively,
treewidth measures how well the structure of a graph
can be captured by a tree-like structural decomposition.
When the treewidth of a graph is small, or equivalently
the graph admits a good tree decomposition, then many
problems intractable on general graphs become effi-
ciently solvable. In this chapter we introduce treewidth
and present its main applications in parameterized
complexity. We explain how good tree decompositions
can be exploited to design fast dynamic-programming
algorithms. We also show how treewidth can be used
as a tool in more advanced techniques, like shifting
strategies, bidimensionality, or the irrelevant vertex
approach.

In Section [6.3] we gave a brief overview on how the deep theory of Graph
Minors of Robertson and Seymour can be used to obtain nonconstructive
FPT algorithms. One of the tools defined by Robertson and Seymour in
their work was the treewidth of a graph. Very roughly, treewidth captures
how similar a graph is to a tree. There are many ways to define “tree-likeness”
of a graph; for example, one could measure the number of cycles, or the
number of vertices needed to be removed in order to make the graph acyclic.
However, it appears that the approach most useful from algorithmic and
graph theoretical perspectives, is to view tree-likeness of a graph G as the
existence of a structural decomposition of G into pieces of bounded size that
are connected in a tree-like fashion. This intuitive concept is formalized via
the notions of a tree decomposition and the treewidth of a graph; the latter
is a quantitative measure of how good a tree decomposition we can possibly
obtain.

Treewidth is a fundamental tool used in various graph algorithms. In pa-
rameterized complexity, the following win/win approach is commonly ex-
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ploited. Given some computational problem, let us try to construct a good
tree decomposition of the input graph. If we succeed, then we can use dy-
namic programming to solve the problem efficiently. On the other hand, if
we fail and the treewidth is large, then there is a reason for this outcome.
This reason has the form of a combinatorial obstacle embedded in the graph
that forbids us to decompose it expeditiously. However, the existence of such
an obstacle can also be used algorithmically. For example, for some problems
like VERTEX COVER or FEEDBACK VERTEX SET, we can immediately con-
clude that we are dealing with a no-instance in case the treewidth is large.
For other problems, like LONGEST PATH, large treewidth implies that we are
working with a yes-instance. In more complicated cases, one can examine the
structure of the obstacle in the hope of finding a so-called irrelevant vertex
or edge, whose removal does not change the answer to the problem. Thus,
regardless of whether the initial construction of a good tree decomposition
succeeded or failed, we win: we solve the problem by dynamic programming,
or we are able to immediately provide the answer, or we can simplify the
problem and restart the algorithm.

We start the chapter by slowly introducing treewidth and tree decom-
positions, and simultaneously showing connections to the idea of dynamic
programming on the structure of a graph. In Section [7.1] we build the intu-
ition by explaining, on a working example of WEIGHTED INDEPENDENT SET,
how dynamic-programming procedures can be designed on trees and on sub-
graphs of grids. These examples bring us naturally to the definitions of path
decompositions and pathwidth, and of tree decompositions and treewidth;
these topics are discussed in Section In Section [7.3] we provide the full
framework of dynamic programming on tree decompositions. We consider
carefully three exemplary problems: WEIGHTED INDEPENDENT SET, DOM-
INATING SET, and STEINER TREE; the examples of DOMINATING SET and
STEINER TREE will be developed further in Chapter [TT}

Section [74] is devoted to connections between graphs of small treewidth
and monadic second-order logic on graphs. In particular, we discuss a power-
ful meta-theorem of Courcelle, which establishes the tractability of decision
problems definable in Monadic Second-Order logic on graphs of bounded
treewidth. Furthermore, we also give an extension of Courcelle’s theorem to
optimization problems.

In Section [7.5] we present a more combinatorial point of view on pathwidth
and treewidth, by providing connections between these graph parameters,
various search games on graphs, and classes of interval and chordal graphs.
While these discussions are not directly relevant to the remaining part of this
chapter, we think that they give an insight into the nature of pathwidth and
treewidth that is invaluable when working with them.

In Section[7.6]we address the question of how to compute a reasonably good
tree decomposition of a graph. More precisely, we present an approximation
algorithm that, given an n-vertex graph G and a parameter k, works in time
O(8%k? - n?) and either constructs a tree decomposition of G of width at
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most 4k + 4, or reports correctly that the treewidth of G is more than k.
Application of this algorithm is usually the first step of the classic win/win
framework described in the beginning of this section.

We then move to using treewidth and tree decompositions as tools in
more involved techniques. Section [7.7]is devoted to applications of treewidth
for designing FPT algorithms on planar graphs. Most of these applications
are based on deep structural results about obstacles to admitting good tree
decompositions. More precisely, in Section [7.7.1] we introduce the so-called
Excluded Grid Theorem and some of its variants, which states that a graph
of large treewidth contains a large grid as minor. In the case of planar graphs,
the theorem gives a very tight relation between the treewidth and the size
of the largest grid minor that can be found in a graph. This fact is then
exploited in Section [7.7.2} where we introduce the powerful framework of
bidimensionality, using which one can derive parameterized algorithms on
planar graphs with subexponential parametric dependence of the running
time. In Section we discuss the parameterized variant of the shifting
technique; a reader familiar with basic results on approximation algorithms
may have seen this method from a different angle. We apply the technique
to give fixed-parameter tractable algorithms on planar graphs for SUBGRAPH
ISOMORPHISM and MINIMUM BISECTION.

In Section we give an FPT algorithm for a problem where a more
advanced version of the treewidth win/win approach is implemented. More
precisely, we provide an FPT algorithm for PLANAR VERTEX DELETION, the
problem of deleting at most k vertices to obtain a planar graph. The crux of
this algorithm is to design an irrelevant vertex rule: to prove that if a large
grid minor can be found in the graph, one can identify a vertex that can be
safely deleted without changing the answer to the problem. This technique is
very powerful, but also requires attention to many technical details. For this
reason, some technical steps of the correctness proof are omitted.

The last part of this chapter, Section [7.9] gives an overview of other graph
parameters related to treewidth, such as branchwidth and rankwidth.

7.1 Trees, narrow grids, and dynamic programming

Imagine that you want to have a party and invite some of your colleagues
from work to come to your place. When preparing the list of invitations, you
would like to maximize the total fun factor of the invited people. However,
from experience you know that there is not much fun when your direct boss
is also invited. As you want everybody at the party to have fun, you would
rather avoid such a situation for any of the invited colleagues.

We model this problem as follows. Assume that job relationships in your
company are represented by a rooted tree T. Vertices of the tree represent
your colleagues, and each v € V(T is assigned a nonnegative weight w(v)
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that represents the amount of contributed fun for a particular person. The
task is to find the maximum weight of an independent set in 7', that is, of a
set of pairwise nonadjacent vertices. We shall call this problem WEIGHTED
INDEPENDENT SET.

This problem can be easily solved on trees by making use of dynamic
programming. As usual, we solve a large number of subproblems that depend
on each other. The answer to the problem shall be the value of a single, top-
most subproblem. Assume that r is the root of the tree T' (which corresponds
to the superior of all the employees, probably the CEQO). For a vertex v of
T, let T, be the subtree of T rooted at v. For the vertex v we define the
following two values:

e Let Afv] be the maximum possible weight of an independent set in T,.
e Let B[v] be the maximum possible weight of an independent set in 7T;, that
does not contain v.

Clearly, the answer to the whole problem is the value of Alr].
Values of A[v] and B[v] for leaves of T" are equal to w(v) and 0, respectively.
For other vertices, the values are calculated in a bottom-up order. Assume

that vy, ..., v, are the children of v. Then we can use the following recursive
formulas: .
B[] = Alv]
i=1
and

q
Afv] = max {B[v], w(v) + Z B[vi}}.
i=1

Intuitively, the correctness of these formulas can be explained as follows. We
know that B[v] stores the maximum possible weight of an independent set
in T, that does not contain v and, thus, the independent set we are seeking
is contained in T, , ..., Ty, . Furthermore, since T;, is a tree, there is no edge
between vertices of two distinct subtrees among Ty, ..., T, . This in turn
implies that the maximum possible weight of an independent set of T, that
does not contain v is the sum of maximum possible weights of an independent
set of Ty, i € {1,...,q}. The formula for A[v] is justified by the fact that
an independent set in T, of the maximum possible weight either contains v,
which is taken care of by the term w(v) +>"7_; B[v;], or does not contain v,
which is taken care of by the term Bv]. Therefore, what remains to do is to
calculate the values of A[v] and B[v] in a bottom-up manner in the tree 7', and
finally read the answer from A[r|. This procedure can be clearly implemented
in linear time. Let us remark that with a slight modification of the algorithm,
using a standard method of remembering the origin of computed values as
backlinks, within the same running time one can find not only the maximum
possible weight, but also the corresponding independent set.

Let us now try to solve WEIGHTED INDEPENDENT SET on a different class
of graphs. The problem with trees is that they are inherently “thin”, so let us
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X3 Xyq

1
1

Fig. 7.1: A subgraph of a 4 x 8 grid, with the third and the fourth columns
highlighted. When computing c[4,Y] for the forbidden set ¥ = {(2,4)}
(crossed out in the fourth column), one of the sets S we consider is S =
{(1,4), (4,4)}, depicted with blue circles. Then, when looking at the previous
column we need to forbid picking neighbors (1,3) and (4, 3) (crossed out in
the third column), since this would violate the independence constraint

try to look at graphs that are “thicker” in nature, like grids. Since the class
of grids is not very broad, let us rather focus on subgraphs of grids. More
precisely, assume that we are given a graph G that is a subgraph of a k x N
grid. The vertex set of a k x N grid consists of all pairs of the form (i, j) for
1<i<kand1l < j <N, and two pairs (i1,71) and (iz,J2) are adjacent
if and only if |iy — ia| + |j1 — j2| = 1. Graph G is a subgraph of an k x N
grid, which means that some vertices and edges of the grid can be missing
in G. Figure [7.]] presents an example of a subgraph of a 4 x 8 grid. In our
considerations, we will think of the number of rows k as quite small (say,
k = 10), while N, the number of columns, can be very large (say, N = 10°).
Of course, since we are trying to solve the WEIGHTED INDEPENDENT SET
problem, every vertex v € V(G) is assigned its weight w(v).

Let X be the j-th column of G, that is, X; = V(G)N{(¢,75) : 1 <i <k},
Moreover, for 1 < j < N, let G; = G[X; U X3 U...U X;]| be the graph
induced by the first j columns. We would like to run a dynamic programming-
algorithm that sweeps the grid from left to right, column by column. In
the case of trees, we recognized two possible situations that were handled
differently in the two dynamic-programming tables: either the root of the
subtree was allowed to be picked into an independent set, or it was forbidden.
Mimicking this idea, let us define the following function c[j, Y] that we shall
compute in the algorithm. For Y C X, we take the following definition:

¢[j, Y] = maximum possible weight of an independent set in G; — Y.

In other words, we are examining graph G, and we look for the best possible
independent set that avoids picking vertices from Y. We now move on to
explaining how the values of ¢[j, Y] will be computed.
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For j = 1, the situation is very simple. For every Y C X;, we iterate
through all possible subsets S C X; \ Y, and for each of them we check
whether it is an independent set. Then ¢[1,Y] is the largest weight among
the candidates (independent sets) that passed this test. Since for each Y C X
we iterate through all possible subsets of X7 \ Y, in total, for all the Y's, the
number of checks is bounded by

[ X1

Z (|)21|>2X1|—€ — 31Xl < gk, (7.1)

£=0

Here, factor (') comes from the choice of Y (the sum iterates over £ = [Y|),
while factor 2/¥11=¢ represents the number of choices for S C X, \'Y. Since
every check can be implemented in k™) time (assuming that for every vertex
we store a list of its neighbors), the total time spent on computing values ¢[1, -]
is 3k . kO,

We now show how to compute the values of ¢[j, -] depending on the precom-
puted values of ¢[j — 1, ], for j > 1. Let us look at one value c[j, Y] for some
Y C Xj;. Similarly, for j = 1, we should iterate through all the possible ways
a maximum weight independent set intersects column X;. This intersection
should be independent, of course, and moreover if we pick some v € X; \ 'Y
to the independent set, then this choice forbids choosing its neighbor in the
previous column X;_; (providing this neighbor exists). But for column X,_;
we have precomputed answers for all possible combinations of forbidden ver-
tices. Hence, we can easily read from the precomputed values what is the best
possible weight of an extension of the considered intersection with X; to the
previous columns. All in all, we arrive at the following recursive formula:

Y] = max {w(5)+c[j—1,N(5)ij,1]}; (7.2)
S is in_de;)endent

here w(S) = > g W(v). Again, when applying for every Y C X; we
iterate through all the subsets of X;\ Y. Therefore, as in we obtain that
the total number of sets S checked, for all the sets Y, is at most 3*. Each S
is processed in k9 time, so the total time spent on computing values clg, ]
is 3. KO,

To wrap up, we first compute the values c[1, ], then iteratively compute
values c[j,] for j € {2,3,..., N} using (7.2), and conclude by observing that
the answer to the problem is equal to c[N, (}]. As argued, each iteration takes
time 3% - k(1) so the whole algorithm runs in time 3% . k9™ . N

Let us now step back and look at the second algorithm that we designed.
Basically, the only property of G that we really used is that V(G) can be
partitioned into a sequence of small subsets (columns, in our case), such that
edges of G can connect only two consecutive subsets. In other words, G has
a “linear structure of separators”, such that each separator separates the part
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lying on the left of it from the part on the right. In the algorithm we actually
used the fact that the columns are disjoint, but this was not that crucial. The
main point was that only two consecutive columns can interact.

Let us take a closer look at the choice of the definition of the table c[j, Y].
Let I be an independent set in a graph G that is a subgraph of a £ x N grid.
For fixed column number j, we can look at the index Y in the cell ¢[j,Y]
as the succinct representation of the interaction between I N |J!_, X, and
In Uflv:jﬂ X,. More precisely, assume that ¥ = X; N N(I N X;44) and,

consequently, the size of C' = I N|J!_, X, is one of the candidates for the
value c[4, Y]. Furthermore, let C’ be any other candidate for the value ¢[j, Y],
that is, let C’ be any independent set in G,;\Y. Observe that then (I\C)UC’
is also an independent set in G. In other words, when going from the column
j to the column j + 1, the only information we need to remember is the set
Y of vertices “reserved as potential neighbors”, and, besides the set Y, we do
not care how exactly the solution looked so far.

If we now try to lift these ideas to general graphs, then the obvious thing to
do is to try to merge the algorithms for trees and for subgraphs of grids into
one. As k x N grids are just “fat” paths, we should define the notion of trees of
“fatness” k. This is exactly the idea behind the notion of treewidth. In the next
section we shall first define parameter pathwidth, which encapsulates in a more
general manner the concepts that we used for the algorithm on subgraphs of
grids. From pathwidth there will be just one step to the definition of treewidth,
which also encompasses the case of trees, and which is the main parameter
we shall be working with in this chapter.

7.2 Path and tree decompositions

We have gathered already enough intuition so that we are ready to introduce
formally the main notions of this chapter, namely path and tree decomposi-
tions.

Path decompositions. A path decomposition of a graph G is a sequence
P = (X1,Xs,...,X,) of bags, where X; C V(G) for each ¢ € {1,2,...,r},
such that the following conditions hold:

(P1) Ui_, X; = V(G). In other words, every vertex of G is in at least one
bag.

(P2) For every uv € E(G), there exists £ € {1,2,...,r} such that the bag
Xy contains both v and wv.

(P3) For every u € V(G), if u € X; N X}, for some ¢ < k, then u € X; also
for each j such that ¢ < j < k. In other words, the indices of the bags
containing v form an interval in {1,2,...,7}.
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Fig. 7.2: A graph, its path and nice path decompositions

See Fig. [7.2]for example of a path decomposition. The width of a path de-
composition (X1, Xo, ..., X,) is maxj<;<, | X;| — 1. The pathwidth of a graph
G, denoted by pw(G), is the minimum possible width of a path decomposi-
tion of G. The reason for subtracting 1 in the definition of the width of the
path decomposition is to ensure that the pathwidth of a path with at least
one edge is 1, not 2. Similarly, we subtract in the definition of treewidth to
ensure that the treewidth of a tree is 1.

We can also interpret the bags of a path decomposition as nodes of a path
and two consecutive bags correspond to two adjacent nodes of the path. This
interpretation will become handy when we introduce tree decomposition.

For us the most crucial property of path decompositions is that they define
a sequence of separators in the graph. In the following, we will say that (A, B)
is a separation of a graph G if AU B = V(G) and there is no edge between
A\ B and B\ A. Then AN B is a separator of this separation, and |A N B
is the order of the separation. Note that any path in G that begins in A
and ends in B must contain at least one vertex of the separator A N B.
Also, for a subset A C V(G) we define the border of A, denoted by 0(A), as
the set of those vertices of A that have a neighbor in V(G) \ A. Note that
(A, (V(G)\ A) U 9(A)) is a separation with separator 9(A). Let us remark
that by Lemma [7.1] each of the bags X; separates vertices in the bags before
1 with the vertices of the bags following after i.

Lemma 7.1. Let (X1, Xs,...,X;) be a path decomposition of a graph G.
Then for every j € {1,...,r — 1} it holds that 5’(ng1 X)) C X;NnXjq.
In other words, (ngl XivU;:j_H X;) is a separation of G with separator
Xj n XjJrl.
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Proof. Let us fix j and let (A, B) = (U/_; Xi, Ui, ., X;). We first show that
(UL, X;) = 9(A) C X; N X;41. Targeting a contradiction, let us assume
that there is a v € 9(A) such that u ¢ X;NX;4,. This means that there is an
edge uwv € E(G) such that u € A, v ¢ A but also u ¢ X; N X;41. Let ¢ be the
largest index such that v € X; and k be the smallest index such that v € Xj.
Since v € A and v ¢ X; N X1, (P3) implies that ¢ < j. Since v ¢ A, we
have also k > j+1. Therefore i < k. On the other hand, by (P2) there should
be a bag X, containing both u and v. We obtain that £ < i < k < ¢, which is
a contradiction. The fact that AN B = X; N X;4; follows immediately from
(P3). 0

Note that we can always assume that no two consecutive bags of a
path decomposition are equal, since removing one of such bags does not
violate any property of a path decomposition. Thus, a path decomposi-
tion (X1, Xs,...,X,) of width p naturally defines a sequence of separations
(Ui=1 Xi, Ui, 1 Xi)- Each of these separations has order at most p, because
the intersection of two different sets of size at most p + 1 has size at most p.

We now introduce sort of a “canonical” form of a path decomposition,
which will be useful in the dynamic-programming algorithms presented in
later sections. A path decomposition P = (X1, Xs,...,X,) of a graph G is
nice if
° X1=XT=®, and
e for every ¢ € {1,2,...,r — 1} there is either a vertex v ¢ X; such that

Xit1 = X; U{v}, or there is a vertex w € X; such that X; 1 = X; \ {w}.

See Fig. [7.2] for example.
Bags of the form X;; = X; U {v} shall be called introduce bags (or in-

troduce nodes, if we view the path decomposition as a path rather than a
sequence). Similarly, bags of the form X;;1 = X; \ {w} shall be called forget
bags (forget nodes). We will also say that X;,1 introduces v or forgets w. Let
us note that because of (P3), every vertex of G gets introduced and becomes
forgotten exactly once in a nice path decomposition, and hence we have that
r, the total number of bags, is exactly equal to 2|V (G)|+ 1. It turns out that
every path decomposition can be turned into a nice path decomposition of
at most the same width.

Lemma 7.2. If a graph G admits a path decomposition of width at most p,
then it also admits a nice path decomposition of width at most p. Moreover,
given a path decomposition P = (X1, Xs,...,X,) of G of width at most p,
one can in time O(p? - max(r,|V(GQ)|)) compute a nice path decomposition of
G of width at most p.

The reader is asked to prove Lemma [7.2]in Exercise

Tree decompositions. A tree decomposition is a generalization of a path
decomposition. Formally, a tree decomposition of a graph G is a pair T =
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(T,{X:t}tev(r)), where T' is a tree whose every node ¢ is assigned a vertex
subset X; C V(G), called a bag, such that the following three conditions
hold:

(T1)  Usev(r Xt = V(G). In other words, every vertex of G is in at least
one bag.

(T2) For every uv € E(G), there exists a node ¢ of T such that bag X;
contains both u and v.

(T3) For every u € V(G), the set T, ={t € V(T) : u € X;}, i.e., the set
of nodes whose corresponding bags contain u, induces a connected subtree
of T.

The width of tree decomposition 7" = (T, { Xt }+ev (1)) equals maxcy (1) [ X¢|—
1, that is, the maximum size of its bag minus 1. The treewidth of a graph G,
denoted by tw(G), is the minimum possible width of a tree decomposition of
G.

To distinguish between the vertices of the decomposition tree T and the
vertices of the graph G, we will refer to the vertices of T as nodes. As we
mentioned before, path decompositions correspond exactly to tree decompo-
sitions with the additional requirement that T has to be a path.

Let us give several examples of how small or large can be the treewidth
of particular graph classes. Forests and trees are of treewidth at most 1 and
cycles have treewidth 2, see Exercise The treewidth of an outerplanar
graph, which is a graph that can be drawn in the plane in such manner that
all its vertices are on one face, is at most 2, see Exercise [7.12] On the other
hand, the treewidth of planar graphs can be arbitrarily large. For example,
as we will see later, the treewidth of a ¢ x ¢ grid is ¢. Interestingly, for every
planar graph H, there is a constant cg, such that for every graph G excluding
H as a minor, the treewidth of G does not exceed ¢y, see Exercise [7.36]

While planar graphs can have arbitrarily large treewidths, as we will see
later, still the treewidth of an n-vertex planar graph is sublinear, more pre-
cisely O(y/n). The treewidth of an n-vertex clique K, is n — 1 and of a
complete bipartite graph K, ,, is min{m,n} — 1. Expander graphs serve as
an example of a sparse graph class with treewidth £2(n), see Exercise

In Lemma [7.1] we have proved that for every pair of adjacent nodes of a
path decomposition, the intersection of the corresponding bags is a separator
that separates the left part of the decomposition from the right part. The
following lemma establishes a similar separation property of bags of a tree
decomposition. Its proof is similar to the proof of Lemma and is left to
the reader as Exercise

Lemma 7.3. Let (T,{X:}+cv (1)) be a tree decomposition of a graph G and
let ab be an edge of T'. The forest T — ab obtained from T by deleting edge ab
consists of two connected components T, (containing a) and T, (containing
b). Let A= U,cy(r,) Xt and B = U,y (1) Xt- Then 9(A),0(B) € XoN X,
Equivalently, (A, B) is a separation of G with separator X, N Xp.
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Again, note that we can always assume that the bags corresponding to two
adjacent nodes in a tree decomposition are not the same, since in such sit-
uation we could contract the edge between them, keeping the same bag in
the node resulting from the contraction. Thus, if (T, {X;};cv (1)) has width
t, then each of the separations given by Lemma [7.3] has order at most .

Similarly to nice path decompositions, we can also define nice tree decom-
positions of graphs. It will be convenient to think of nice tree decompositions
as rooted trees. That is, for a tree decomposition (7', { Xt }iev (1)) we distin-
guish one vertex r of T" which will be the root of T'. This introduces natural
parent-child and ancestor-descendant relations in the tree 7. We will say
that such a rooted tree decomposition (7', { X; }rev (1)) is nice if the following
conditions are satisfied:

e X, =0 and X, = 0 for every leaf ¢ of T. In other words, all the leaves as
well as the root contain empty bags.
e Every non-leaf node of T is of one of the following three types:

— Introduce node: a node ¢t with exactly one child ¢ such that X; =
Xy U {v} for some vertex v ¢ Xy ; we say that v is introduced at t.

— Forget node: a node ¢ with exactly one child ¢’ such that X; = X\ {w}
for some vertex w € Xy ; we say that w is forgotten at t.

— Join node: a node ¢ with two children ¢, ¢5 such that X; = Xy, = X4, .

At first glance the condition that the root and the leaves contain empty
bags might seem unnatural. As we will see later, this property helps to
streamline designing dynamic-programming algorithms on tree decomposi-
tions, which is the primary motivation for introducing nice tree decomposi-
tions. Note also that, by property (T3) of a tree decomposition, every vertex
of V(G) is forgotten only once, but may be introduced several times.

Also, note that we have assumed that the bags at a join node are equal
to the bags of the children, sacrificing the previous observation that any
separation induced by an edge of the tree T is of order at most ¢. The increase
of the size of the separators from ¢ to ¢ + 1 has negligible effect on the
asymptotic running times of the algorithms, while nice tree decompositions
turn out to be very convenient for describing the details of the algorithms.

The following result is an analogue of Lemma/[7.2] for nice tree decomposi-
tions. The reader is asked to prove it in Exercise [7.2]

Lemma 7.4. If a graph G admits a tree decomposition of width at most k,
then it also admits a nice tree decomposition of width at most k. Moreover,
given a tree decomposition T = (T,{X;}scv (1)) of G of width at most k, one
can in time O(k? - max(|V(T)|,|V(G)|)) compute a nice tree decomposition
of G of width at most k that has at most O(k|V(QG)|) nodes.

Due to Lemma [7.4] we will assume that all the nice tree decompositions
used by our algorithms have O(k|V(G)]) nodes.
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Note that in a general setting a good path/tree decomposition of an in-
put graph is not known in advance. Hence, in the dynamic-programming
algorithms we will always assume that such a decomposition is provided on
the input together with the graph. For this reason, we will need to address
separately how to compute its path/tree decomposition of optimum or near-
optimum width, so that an efficient dynamic-programming algorithm can be
employed on it. In this book we shall not answer this question for path de-
compositions and pathwidth. However, in Section [7.6] we present algorithms
for computing tree decompositions of (approximately) optimum width.

7.3 Dynamic programming on graphs of bounded
treewidth

In this section we give examples of dynamic-programming-based algorithms
on graphs of bounded treewidth.

7.3.1 WEIGHTED INDEPENDENT SET

In Section[7.1] we gave two dynamic-programming routines for the WEIGHTED
INDEPENDENT SET problem. The first of them worked on trees, and the
second of them worked on subgraphs of grids. Essentially, in both cases the
main idea was to define subproblems for parts of graphs separated by small
separators. In the case of trees, every vertex of a tree separates the subtree
rooted at it from the rest of the graph. Thus, choices made by the solution
in the subtree are independent of what happens outside it. The algorithm
for subgraphs of grids exploited the same principle: every column of the grid
separates the part of the graph on the left of it from the part on the right.

It seems natural to combine these ideas for designing algorithms for graphs
of bounded treewidth. Let us focus on our running example of the WEIGHTED
INDEPENDENT SET problem, and let 7 = (T, {X;};ev (1)) be a tree decom-
position of the input n-vertex graph G that has width at most k. By applying
Lemma [7.4) we can assume that 7 is a nice tree decomposition. Recall that
then T is rooted at some node r. For a node t of T', let V; be the union of all
the bags present in the subtree of T rooted at t, including X;. Provided that
t # r we can apply Lemma to the edge of T between t and its parent,
and infer that 9(V;) C X;. The same conclusion is trivial when ¢ = r, since
then V;. = V(G) and 9(V,.) = (). This exactly formalizes the intuition that
the subgraph induced by V; can communicate with the rest of the graph only
via bag X;, which is of small size.

Extending our intuition from the algorithms of Section we would like
to define subproblems depending on the interaction between the solution and
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bag X;. Consider the following: Let I, I be two independent sets of G such
that Iy N X; = I,NX;. Let us add the weights of vertices of I; and I, that are
contained in V;, and suppose that it turned out that w(l; NV;) > w(lxNV,).
Observe that then solution Is is suboptimal for the following reason. We can
obtain a solution I} from Iy by replacing I N V; with I; N'V;. The fact that
X, separates V; \ X; from the rest of the graph, and that I; and I have the
same intersection with X, implies that I} is still an independent set. On the
other hand, w(I; NV;) > w(l2 N'V;) implies that w(I3}) > w(l3).

Therefore, among independent sets I satisfying I N X; = S for some fixed
S, all the maximum-weight solutions have exactly the same weight of the part
contained in V;. This weight corresponds to the maximum possible value for
the following subproblem: given S C X, we look for a maximum-weight ex-
tension S D S such that S C Vi, SN X, =5, and S is independent. Indeed,
the argument from the previous paragraph shows that for any solution I with
I'nX; =S, the part of the solution contained in V; can be safely replaced
with the best possible partial solution S — this replacement preserves in-
dependence and can only increase the weight. Observe that the number of
subproblems is small: for every node ¢, we have only 21Xt subproblems. Also,
we do not need to remember S explicitly; remembering its weight will suffice.

Hence, we now mimic the bottom-up dynamic programming that we per-
formed for trees. For every node ¢t and every S C X;, define the following
value:

c[t, S] = maximum possible weight of a set S such that
SCSCV,SNX, =2, and S is independent.

If no such set S exists, then we put c[t, S] = —oo; note that this happens if
and only if S is not independent itself. Also c[r, ()] is exactly the maximum
weight of an independent set in G; this is due to the fact that V. = V(G)
and X, = 0.

The reader can now observe that this definition of function c[-, -] differs
from the one used in Section While there we were just forbidding ver-
tices from some set Y from being used, now we fix ezactly how a solution
is supposed to interact with a bag. Usually, fixing the exact interaction of
the solution with a bag is a more generic approach to designing dynamic-
programming algorithms on tree decompositions. However, it must be ad-
mitted that tweaking the definition slightly (e.g., by relaxing the exactness
condition to allow or forbid usage of a subset of vertices) often leads to a sim-
pler description. This is actually the case also in the example of WEIGHTED
INDEPENDENT SET. In Exercise the reader is asked to work out the de-
tails of a dynamic program with the definition of a state mimicking the one
used in Section [Z.11

We now move on to presenting how the values of ¢[-,:] are computed.
Thanks to the definition of a nice tree decomposition, there are only a few
simple ways in which a bag at some node can relate to the bags of the children
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of this node. Therefore, if we are fortunate we can compute the values at each
node t based on the values computed for the children of ¢. This will be done
by giving recursive formulas for ¢[t, S]. The case when ¢ is a leaf corresponds
to the base case of the recurrence, whereas values for c[-, -] for a non-leaf node
t depend on the values of ¢[-, ] for the children of ¢. By applying the formulas
in a bottom-up manner on 7' we will finally compute c[r, )], which is the value
we are looking for.

Leaf node. If ¢ is a leaf node, then we have only one value c[t, §] = 0.

Introduce node. Suppose t is an introduce node with child ¢’ such that X; =
Xy U{v} for some v ¢ X;. Let S be any subset of X;. If S is not independent,

then we can immediately put c[t, S] = —oo; hence assume otherwise. Then
we claim that the following formula holds:
t', S if S;
eft, 5] = {15 o ¢ 5; (73
cft’,S\ {v}] +w(v) otherwise.

To prove formally that this formula holds, consider first the case when
v ¢ S. Then the families of sets S considered in the definitions of c[t, S] and
of ¢[t’, S] are equal, which immediately implies that c[t, S] = ¢[t', S].

Consider the case when v € S, and let S be a set for which ‘the maximum
is attained in the definition of c[t,S]. Then it follows that S\ {v} is one
of the sets considered in the definition of c[t/, S \ {v}], which implies that
cft’, S\ {v}] = w(S\ {v}) = w(5) — w(v) = c|t, S] — w(v). Consequently,

c[t, S] < c[t’', S\ {v}] + w(v). (7.4)

On the other hand, let S’ be a set for which the maximum is attained in
the definition of ¢[t', S\ {v}]. Since we assumed that S is independent, we
have that v does not have any neighbor in S\ {v} = §’ N X;,. Moreover, by
Lemma v does not have any neighbors in V4 \ Xy, which is a superset of
S \ Xy. We conclude that v does not have any neighbors in S’, which means
that S’ U {v} is an independent set. Since this set intersects with X; exactly
at S, it is considered in the definition of c[t, S] and we have that

clt, 8] > w(S' U {v}) = w(S) + w(v) = clt’, S\ {v}] + w(v). (7.5)

Concluding, ([7.4) and (7.5) together prove (7.3) for the case v € S.

Forget node. Suppose t is a forget node with child ¢’ such that X, = X;/\{w}
for some w € X;. Let S be any subset of X;; again we assume that S
is independent, since otherwise we put c[t,S] = —oo. We claim that the
following formula holds:

c[t, §] = max {c[t', S, elt’, S U {w)] } (7.6)
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We now give a formal proof of this formula. Let S be a set for which the
maximum is attained in the definition of ¢[t, S]. If w ¢ S, then S is one of the

sets considered in the definition of ¢[t’, S], and hence c[t', S] > w(S) = c]t, S].
However, if w € S then S is one of the sets considered in the definition of

-~

c[t’, SU{w}], and then c[t’, SU{w}] > w(S) = c[t, S]. As exactly one of these
alternatives happens, we can infer that the following holds always:

ot 8] < max{c[t’,S],c[t’,SU {w}]}. (7.7)

On the other hand, observe that each set that is considered in the definition
of c[t’, S] is also considered in the definition of c[t, S|, and the same holds also
for ¢[t’, SU{w}]. This means that c[t, S] > c[t/, S] and c[t, S] > ¢[t’, SU{w}].
These two inequalities prove that

cft, 8] > max {c[t’, S, eft', S U {w}] } (7.8)

The combination of (7.7) and (7.8]) proves that formula (7.6]) indeed holds.

Join node. Finally, suppose that ¢ is a join node with children ¢;, ¢ such
that X; = X;, = X4,. Let S be any subset of X;; as before, we can assume
that S is independent. The claimed recursive formula is as follows:

clt, S] = c[t1, S] + c[ta, S] — w(S). (7.9

We now prove formally that this formula holds. First take S to be a set for
which the maximum is attained in the definition of c[t, S]. Let S = SNV,
and §2 =39n Vi,. Observe that §1 is independent and §1 N Xy, = S, so this
set is considered in the definition of c[t1,S]. Consequently c[t1,S] > w(§1),
and analogously c[ts, S] > w(§2). Since §1 N §2 = S, we obtain the following:

clt, ] = w(8) = w(81) + w(S2) — w(S) < c[t1, 5] + c[ta, S] — w(S). (7.10)

On the other hand, let §{ be a set for which the maximum is attained in the
definition of ¢[t1, 5], and similarly define S} for c[ty, S]. By Lemma we
have that there is no edge between vertices of V;, \ X; and V, \ X;, which
implies that the set S := 5’\{ U §§ is independent. Moreover S’ N X; = S,
which implies that S is one of the sets considered in the definition of c[t, ).
Consequently,

c[t, S] > w(8") = w(8)) + w(S}) — w(S) = c[t1, S] + c[ta, S] — w(S). (7.11)
From (7.10) and (7.11) we infer that indeed holds.

This concludes the description and the proof of correctness of the recursive
formulas for computing the values of ¢[-,-]. Let us now wrap up the whole
algorithm and estimate the running time. Recall that we are working on a tree
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decomposition of width at most k, which means that | X;| < k + 1 for every
node ¢. Thus at node t we compute 2/X:/ < 25+1 values of c[t, S]. However,
we have to be careful when estimating the time needed for computing each
of these values.

Of course, we could just say that using the recursive formulas and any
graph representation we can compute each value c[t,S] in n®®) time, but
then we would end up with an algorithm running in time 2% - n°™)_ It is easy
to see that all the operations needed to compute one value can be performed
in kM time, apart from checking adjacency of a pair of vertices. We need it,
for example, to verify that a set S is independent. However, a straightforward
implementation of an adjacency check runs in O(n) time, which would add an
additional O(n) factor to the running time of the algorithm. Nonetheless, as
G is a graph of treewidth at most k, it is possible to construct a data structure
in time k°Mn that allows performing adjacency queries in time O(k). The
reader is asked to construct such a data structure in Exercise [Z.16

Wrapping up, for every node t it takes time 2% - k(1) to compute all the
values c[t, S]. Since we can assume that the number of nodes of the given
tree decompositions is O(kn) (see Lemma [7.4), the total running time of the
algorithm is 2% - k(1) . . Hence, we obtain the following theorem.

Theorem 7.5. Let G be an n-vertex graph with weights on vertices given
together with its tree decomposition of width at most k. Then the WEIGHTED
INDEPENDENT SET problem in G is solvable in time 2% - kK€1) . p.

Again, using the standard technique of backlinks, i.e., memorizing for every
cell of table [, -] how its value was obtained, we can reconstruct the solution
(i.e., an independent set with the maximum possible weight) within the same
asymptotic running time. The same will hold also for all the other dynamic-
programming algorithms given in this section.

Since a graph has a vertex cover of size at most ¢ if and only if it has an
independent set of size at least n — ¢, we immediately obtain the following
corollary.

Corollary 7.6. Let G be an n-vertex graph given together with its tree de-
composition of width at most k. Then one can solve the VERTEX COVER
problem in G in time 2F - kO .,

The algorithm of Theorem [7.5] seems actually quite simple, so it is very
natural to ask if its running time could be improved. We will see in Chap-
ter Theorem that under some reasonable assumptions the upper
bound of Theorem [7.5]is tight.

The reader might wonder now why we gave all the formal details of this
dynamic-programming algorithm, even though most of them were straightfor-
ward. Our point is that despite the naturalness of many dynamic-programming
algorithms on tree decompositions, proving their correctness formally needs
a lot of attention and care with regard to the details. We tried to show which



7.3 Dynamic programming on graphs of bounded treewidth 167

implications need to be given in order to obtain a complete and formal proof,
and what kind of arguments can be used along the way.

Most often, proving correctness boils down to showing two inequalities
for each type of node: one relating an optimum solution for the node
to some solutions for its children, and the second showing the reverse
correspondence. It is usual that a precise definition of a state of the
dynamic program together with function ¢ denoting its value already
suggests natural recursive formulas for ¢. Proving correctness of these
formulas is usually a straightforward and tedious task, even though it
can be technically challenging.

For this reason, in the next dynamic-programming routines we usually only
give a precise definition of a state, function ¢, and the recursive formulas for
computing c. We resort to presenting a short rationale for why the formulas
are correct, leaving the full double-implication proof to the reader. We suggest
that the reader always performs such double-implication proofs for his or her
dynamic-programming routines, even though all the formal details might not
always appear in the final write-up of the algorithm. Performing such formal
proofs can highlight the key arguments needed in the correctness proof, and
is the best way of uncovering possible problems and mistakes.

Another issue that could be raised is why we should not go further and
also estimate the polynomial factor depending on k in the running time of
the algorithm, which is now stated just as k1), We refrain from this, since
the actual value of this factor depends on the following;:

e How fast we can implement all the low-level details of computing formu-
las for cl[t, S], e.g., iteration through subsets of vertices of a bag. This in
particular depends on how we organize the structure of G and 7 in the
memory.

e How fast we can access the exponential-size memory needed for storing
the dynamic-programming table c[-, ].

Answers to these questions depend on low-level details of the implementation
and on the precise definition of the assumed model of RAM computations.
While optimization of the k°() factor is an important and a nontrivial prob-
lem in practice, this issue is beyond the theoretical scope of this book. For
this reason, we adopt a pragmatic policy of not stating such polynomial fac-
tors explicitly for dynamic-programming routines. In the bibliographic notes
we provide some further references to the literature that considers this issue.
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7.3.2 DOMINATING SET

Our next example is the DOMINATING SET problem. Recall that a set of
vertices D is a dominating set in graph G if V(G) = N[D]. The goal is
to provide a dynamic-programming algorithm on a tree decomposition that
determines the minimum possible size of a dominating set of the input graph
G. Again, n will denote the number of vertices of the input graph G, and k is
an upper bound on the width of the given tree decomposition (7', {X;}sev (1))
of G.

In this algorithm we will use a refined variant of nice tree decompositions.
In the algorithm of the previous section, for every node ¢ we were essentially
interested in the best partial solutions in the graph G[V;]. Thus, whenever a
vertex v was introduced in some node ¢, we simultaneously introduced also
all the edges connecting it to other vertices of X;. We will now add a new
type of a node called an introduce edge node. This modification enables us to
add edges one by one, which often helps in simplifying the description of the
algorithm.

Formally, in this extended version of a nice tree decomposition we have
both introduce vertex nodes and introduce edge nodes. Introduce vertex
nodes correspond to introduce nodes in the standard sense, while introduce
edge nodes are defined as follows.

e Introduce edge node: a node t, labeled with an edge uwv € E(G) such
that u,v € Xy, and with exactly one child ¢’ such that X; = X,. We say
that edge uv is introduced at t.

We additionally require that every edge of E(G) is introduced exactly
once in the whole decomposition. Leaf nodes, forget nodes and join nodes are
defined just as previously. Given a standard nice tree decomposition, it can
be easily transformed to this variant as follows. Observe that condition (T3)
implies that, in a nice tree decomposition, for every vertex v € V(G), there
exists a unique highest node ¢(v) such that v € X;(,); moreover, the parent
of Xy is a forget node that forgets v. Consider an edge uv € E(G), and
observe that (T2) implies that ¢(v) is an ancestor of ¢(u) or ¢(u) is an ancestor
of t(v). Without loss of generality assume the former, and observe that we
may insert the introduce edge bag that introduces uv between ¢(u) and its
parent (which forgets u). This transformation, for every edge wv € E(G),
can be easily implemented in time k°(Mn by a single top-down transversal of
the tree decomposition. Moreover, the obtained tree decomposition still has
O(kn) nodes, since a graph of treewidth at most &k has at most kn edges (see
Exercise .

With each node t of the tree decomposition we associate a subgraph Gy of
G defined as follows:

G = (Vt,Et = {e : e is introduced in the subtree rooted at t})
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While in the previous section the subproblems for ¢ were defined on the graph
G[V4], now we will define subproblems for the graph G;.

We are ready to define the subproblems formally. For WEIGHTED IN-
DEPENDENT SET, we were computing partial solutions according to how a
maximum weight independent set intersects a bag of the tree decomposition.
For domination the situation is more complicated. Here we have to distin-
guish not only if a vertex is in the dominating set or not, but also if it is
dominated. A coloring of bag X, is a mapping f: X; — {0,(), 1} assigning
three different colors to vertices of the bag.

e Black, represented by 1. The meaning is that all black vertices have to be
contained in the partial solution in G;.

e White, represented by 0. The meaning is that all white vertices are not
contained in the partial solution and must be dominated by it.

e Grey, represented by 0. The meaning is that all grey vertices are not
contained in the partial solution, but do not have to be dominated by it.

The reason why we need to distinguish between white and grey vertices is
that some vertices of a bag can be dominated by vertices or via edges which
are not introduced so far. Therefore, we also need to consider subproblems
where some vertices of the bag are not required to be dominated, since such
subproblems can be essential for constructing the optimum solution. Let us
stress the fact that we do not forbid grey vertices to be dominated — we just
do not care whether they are dominated or not.

For a node t, there are 31Xt colorings of X;; these colorings form the space
of states at node t. For a coloring f of X;, we denote by c[t, f] the minimum
size of a set D C V; such that

e DN X, = f (1), which is the set of vertices of X; colored black.

e Every vertex of V; \ f~1(0) either is in D or is adjacent in G to a vertex
of D. That is, D dominates all vertices of V; in graph G, except possibly
some grey vertices in Xj.

We call such a set D a minimum compatible set for t and f. If no minimum
compatible set for ¢ and f exists, we put c[t, f] = +00. Note that the size of
a minimum dominating set in G is exactly the value of ¢[r, §] where r is the
root of the tree decomposition. This is because we have G = G,. and X, = (),
which means that for X, we have only one coloring: the empty function.

It will be convenient to use the following notation. For a subset X C V(G),
consider a coloring f : X — {0,0,1}. For a vertex v € V(G) and a color
a € {0,0,1} we define a new coloring f,_q : X U {v} — {0,0,1} as follows:

f(z) when x # v,
! when x = v.

fv%a(m) - {

For a coloring f of X and Y C X, we use f|y to denote the restriction of f
to Y.
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We now proceed to present the recursive formulas for the values of c. As
we mentioned in the previous section, we give only the formulas and short
arguments for their correctness, leaving the full proof to the reader.

Leaf node. For a leaf node t we have that X; = (). Hence there is only one,
empty coloring, and we have c[t, §] = 0.

Introduce vertex mode. Let ¢ be an introduce node with a child ¢ such
that X; = Xy U {v} for some v ¢ Xy. Since this node does not introduce
edges to Gy, the computation will be very simple — v is isolated in G. Hence,
we just need to be sure that we do not introduce an isolated white vertex,
since then we have c[t, f] = +o00. That is, for every coloring f of X; we can
put

+o0 when f(v) =0,
ct, f] = q [t flx,] when f(v) =0,
1+c[t', flx,] when f(v)=1.

Introduce edge node. Let ¢t be an introduce edge node labeled with an
edge uv and let ¢’ be the child of ¢. Let f be a coloring of X;. Then sets D
compatible for ¢t and f should be almost exactly the sets that are compatible
for ' and f, apart from the fact that the edge uv can additionally help in
domination. That is, if f colors u black and v white, then when taking the
precomputed solution for ¢ we can relax the color of v from white to grey
— in the solution for ¢’ we do not need to require any domination constraint
on v, since v will get dominated by u anyways. The same conclusion can be
drawn when v is colored white and v is colored black. Therefore, we have the
following formulas:

)

', fumol - when (f(u), f(v)) = (1,0),
ct, fl = qclt’, fumel  when (f(w), f(v)) = (0,1),

ct', f otherwise.

Forget node. Let t be a forget node with a child ¢ such that X; = Xy \ {w}
for some w € X . Note that the definition of compatible sets for ¢ and f
requires that vertex w be dominated, so every set D compatible for ¢ and f
is also compatible for ¢’ and f,—1 (if w € D) or fu—o (if w ¢ D). On the
other hand, every set compatible for ¢’ and any of these two colorings is also
compatible for ¢ and f. This justifies the following recursive formula:

C[t, f] = min {C[t/, fw—>1]a C[tlv fw—>0] }

Join node. Let ¢t be a join node with children ¢; and ¢5. Recall that X; =
Xt, = Xt,. We say that colorings fi of X, and f; of X, are consistent with
a coloring f of X, if for every v € X; the following conditions hold
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() f(v)=11if and only if f1(v) = fo(v) =1, X
(@) f(v) = Q if and only if (fi(v), f2(v)) € {A(O,O), (0,0)},

(#1) f(v) =0if and only if f1(v) = fa(v) = 0.
On one hand, if D is a compatible set for f and ¢, then D; := DNV, and
Dy := DNV, are compatible sets for ¢; and f;, and ¢ty and fs, for some
colorings f1, fo that are consistent with f. Namely, for every vertex v that is
white in f we make it white either in f; or in f;, depending on whether it is
dominated by D; in Gy, or by D5 in Gy, (if v is dominated by both D; and
Dy, then both options are correct). On the other hand, if D; is compatible for
t; and f; and Dy is compatible for ¢ and fs, for some colorings f1, f> that are
consistent with f, then it is easy to see that D := D; U D5 is compatible for ¢
and f. Since for such Dy, Dy we have that DN X, = D1 N Xy, = DaNXy, =
f71(1), it follows that |D| = |D1| + |Da| — |f~1(1)|. Consequently, we can
infer the following recursive formula:

clt. ] = min {cftr, f] + elta. 2] = 17 (]}, (7.12)

1,J2

where the minimum is taken over all colorings fi, fo consistent with f.

This finishes the description of the recursive formulas for the values of c.
Let us analyze the running time of the algorithm. Clearly, the time needed
to process each leaf node, introduce vertex/edge node or forget node is 3% -
E°M | providing that we again use the data structure for adjacency queries
of Exercise However, computing the values of ¢ in a join node is more
time consuming. The computation can be implemented as follows. Note that
if a pair fi, fo is consistent with f, then for every v € X; we have

(f(v)a fl(’U>7 f2<v)) € {(1, 17 1)’ (07070)’ (Oa 6,0)’ (6’ 670>}

It follows that there are exactly 4/X¢! triples of colorings (f, f1, f2) such that
f1 and f5 are consistent with f, since for every vertex v we have four possibil-
ities for (f(v), f1(v), f2(v)). We iterate through all these triples, and for each
triple (f, f1, f2) we include the contribution from fi, f2 to the value of c[¢, f]
according to . In other words, we first put c[t, f] = +oo for all colorings
f of X;, and then for every considered triple (f, f1, f2) we replace the current
value of c[t, f] with c[t1, fi] + c[t2, f2] — |f~1(1)] in case the latter value is
smaller. As |X;| < k + 1, it follows that the algorithm spends 4% - k91 time
for every join node. Since we assume that the number of nodes in a nice tree
decomposition is O(kn) (see Exercise [7.15)), we derive the following theorem.

Theorem 7.7. Let G be an n-vertex graph given together with its tree de-
composition of width at most k. Then one can solve the DOMINATING SET
problem in G in time 4 - k() . .

In Chapter [IT} we show how one can use more clever techniques in the
computations for the join node in order to reduce the exponential dependence
on the treewidth from 4* to 3*.
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7.3.3 STEINER TREE

Our last example is the STEINER TREE problem. We are given an undi-
rected graph G and a set of vertices K C V(G), called terminals. The goal
is to find a subtree H of G of the minimum possible size (that is, with the
minimum possible number of edges) that connects all the terminals. Again,
assume that n = |V(G)| and that we are given a nice tree decomposition
T = (T,{Xt}tev(r)) of G of width at most k. We will use the same variant
of a nice tree decomposition as in Section that is, with introduce edge
nodes.

While the exponential dependence on the treewidth in the algorithms we
discussed so far is single-exponential, for STEINER TREE the situation will be
different. In what follows, we give an algorithm with running time k°®*) . n.
While a single-exponential algorithm for STEINER TREE actually exists, it
requires more advanced techniques that will be discussed in Chapter

In order to make the description of the algorithm simpler, we will make
one small adjustment to the given decomposition. Let us pick an arbitrary
terminal u* € K and let us add it to every bag of the decomposition 7. Then
the width of 7 increases by at most 1, and bags at the root and at all the
leaves are equal to {u*}. The idea behind this simple tweak is to make sure
that every bag of 7 contains at least one terminal. This will be helpful in the
definition of the state of the dynamic program.

Let H be a Steiner tree connecting K and let ¢ be a node of 7. The part
of H contained in Gy is a forest F' with several connected components, see
Fig. Note that this part is never empty, because X; contains at least one
terminal. Observe that, since H is connected and X; contains a terminal, each
connected component of F' intersects X;. Moreover, every terminal from K N
V; should belong to some connected component of F. We try to encode all
this information by keeping, for each subset X C X; and each partition P of
X, the minimum size of a forest F in G; such that

(a) KNV, CV(F),ie., F spans all terminals from V;,

(b) V(F)Nn X, = X, and

(¢) the intersections of X; with vertex sets of connected components of F
form exactly the partition P of X.

When we introduce a new vertex or join partial solution (at join nodes), the
connected components of partial solutions could merge and thus we need to
keep track of the updated partition into connected components.

More precisely, we introduce the following function. For a bag X;, a set
X C X, (a set of vertices touched by a Steiner tree), and a partition P =
{P\,P,...,P;} of X, the value c[t, X, P] is the minimum possible number
of edges of a forest F' in G; such that:

e [ has exactly ¢ connected components that can be ordered as C1,...,Cy
so that P, = V(C,) N X for each s € {1,...,q}. Thus the partition P
corresponds to connected components of F.
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H
Xy

Fig. 7.3: Steiner tree H intersecting bag X; and graph G;

e X;NV(F)=X. That is, vertices of X; \ X are untouched by F.
e Every terminal vertex from K NV; is in V(F).

A forest F' conforming to this definition will be called compatible for (t, X, P).
If no compatible forest F' exists, we put c[t, X, P] = +oc.

Note that the size of an optimum Steiner tree is exactly ¢[r, {u*}, {{u*}}],
where r is the root of the decomposition 7. This is because we have that
X, = {u*}. We now provide recursive formulas to compute the values of c.

Leaf node. If ¢ is a leaf node, then X; = {u*}. Since u* € K, we have
clt,0,0] = +o0 and c[t, {u*}, {{v*}}] = 0.

Introduce vertex node. Suppose that ¢ is an introduce vertex node with
a child ¢’ such that X; = X U {v} for some v ¢ X . Recall that we have
not introduced any edges adjacent to v so far, so v is isolated in G}. Hence,
for every set X C X, and partition P = {P1,P,,..., P} of X we do the
following. If v is a terminal, then it has to be in X. Moreover, if v is in X,
then {v} should be a block of P, that is, v should be in its own connected
component. If any of these conditions is not satisfied, we put c[t, X, P] = +o0.
Otherwise we have the following recursive formula:

[, X\ {o}, P\ {{v}}] ifveX,

clt, X, P] = ¢ , )
clt’, X, P] otherwise.

Introduce edge node. Suppose that ¢ is an introduce edge node that in-
troduces an edge uv, and let ¢’ be the child of ¢. For every set X C X; and
partition P = {Py, Pa,...,P;} of X we consider three cases. If v ¢ X or
v ¢ X, then we cannot include uwv into the tree under construction, as one
of its endpoints has been already determined not to be touched by the tree.
Hence in this case c[t, X, P] = ¢[t’, X, P]. The same happens if v and v are
both in X, but are not in the same block of P. Assume then that u and v are
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Fig. 7.4: Undesirable merge of partial solutions in a join node

both in X and they actually are in the same block of P. Then the edge uv
either has been picked to the solution, or has not been picked. If not, then
we should look at the same partition P at ¢, and otherwise the block of u
and v in P should have been obtained from merging two smaller blocks, one
containing v and the second containing v. Hence

e[t, X, P] = min { mincft', X, P'] + 1, ft', X, 79}},

where in the inner minimum we consider all partitions P’ of X in which u
and v are in separate blocks (as otherwise adding uv would create a cycle)
such that after merging the blocks of v and v we obtain the partition P.

Forget node. Suppose that ¢ is a forget node with a child ¢ such that
X; = Xy \ {w} for some w € Xy. Consider any set X C X; and partition
P ={P,P,,...,P;} of X. The solution for X and P might either use the
vertex w, in which case it should be added to one of existing blocks of P, or
not use it, in which case we should simply look on the same partition of the
same X. Hence

c[t, X, P] = min { H%Di/nc[t', X U{w}, Pt X, P]},

where the inner minimum is taken over all partitions P’ of X U {w} that are
obtained from P by adding w to one of the existing blocks.

Join node. Suppose t is a join node with children t; and t5. Recall that
then X; = X, = Xi,. In essence, in the computation for ¢ we need to
encode merging two partial solutions: one originating from G;, and the second
originating from G,. When merging two partial solutions, however, we have
to be careful because such a merge can create cycles, see Fig. [7:4]
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To avoid cycles while merging, we introduce an auxiliary structureE For a
partition P of X let Gp be a forest with a vertex set X, such that the set of
connected components in Gp corresponds exactly to P. In other words, for
each block of P there is a tree in Gp with the same vertex set. We say that a
partition P = {Py, P, ..., P} of X is an acyclic merge of partitions P; and
P if the merge of two forests Gp, and Gp, (treated as a multigraph) is a
forest whose family of connected components is exactly P.

Thus we have the following formula:

C[t,X, P] = m17r31 C[tl,X, 731] + C[tQ,X,PQ],
1,/72
where in the minimum we consider all pairs of partitions Py, P, such that P
is an acyclic merge of them.

This concludes the description of the recursive formulas for the values
of c. We proceed to estimate the running time. Recall that every bag of
the decomposition has size at most k& + 2. Hence, the number of states per
node is at most 2¥+2 . (k + 2)k*2 = E9() since for a node ¢ there are 2/%¢|
subsets X C X; and at most | X |IX! partitions of X. The computation of a
value for every state requires considering at most all the pairs of states for
some other nodes, which means that each value can be computed in time
(KC#))2 = EO®) Thus, up to a factor polynomial in k, which is anyhow
dominated by the O-notation in the exponent, for every node the running
time of computing the values of ¢ is k®®). We conclude with the following
theorem.

Theorem 7.8. Let G be an n-vertex graph, let K C V(G) be a given set of
terminals, and assume that G is given together with its tree decomposition of
width at most k. Then one can find the minimum possible number of edges
of a Steiner tree connecting K in time k©*) . n.

Algorithms similar to the dynamic programming of Theorem can be
used to solve many problems in time k°*).n®(1) Essentially, such a running
time appears for problems with connectivity requirements, since then it is
natural to keep in the dynamic programming state a partition of a subset
of the bag. Since the number of such partitions is at most k), this factor
appears naturally in the running time.

For convenience, we now state formally the most prominent problems that
can be solved in single-exponential time when parameterized by treewidth
(i.e., in time 20(k) 'no(l)), and those that can be solved in slightly super-
exponential time (i.e., kO . n®1)), We leave designing the remaining al-
gorithms from the following theorems as two exercises: Exercise [7.18] and

Exercise [7.10l

L One could avoid the cycle detection by relaxing the definition of c[t, X, P] and dropping
the assumption that F' is a forest. However, as in other problems, like FEEDBACK VERTEX
SET, cycle checking is essential, we show a common solution here.
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Let us recall that the MAXCUT problem asks for a partition of V(G) into
sets A and B such that the number of edges between A and B is maximized.
The ¢-COLORING problem asks whether G can be properly colored using g
colors, while in CHROMATIC NUMBER the question is to find the minimum
possible number of colors needed to properly color G. LONGEST PATH and
LoNGEST CYCLE ask for the existence of a path/cycle on at least ¢ vertices
in G, for a given integer ¢. Similarly, in CYCLE PACKING the question is
whether one can find ¢ vertex-disjoint cycles in G. Problems CONNECTED
VERTEX COVER, CONNECTED DOMINATING SET, CONNECTED FEEDBACK
VERTEX SET differ from their standard (non-connected) variants by addition-
ally requiring that the solution vertex cover/dominating set/feedback vertex
set induces a connected graph in G.

Theorem 7.9. Let G be an n-vertex graph given together with its tree de-
composition of width at most k. Then in G one can solve

VERTEX COVER and INDEPENDENT SET in time 2F - kO .
DOMINATING SET in time 4% . kO . p,

ODD CYCLE TRANSVERSAL in time 3% - kK€1) . p,

MAXCUT in time 2F - kM) . n,

¢-COLORING in time ¢* - k) . p.

Theorem 7.10. Let G be an n-vertex graph given together with its tree de-
composition of width at most k. Then one can solve each of the following
problems in G in time kOF) . n:

STEINER TREE,

FEEDBACK VERTEX SET,

HAMILTONIAN PATH and LONGEST PATH,
HamiLroNiaAN CYCLE and LONGEST CYCLE,
CHROMATIC NUMBER,

CYCLE PACKING,

CONNECTED VERTEX COVER,

CONNECTED DOMINATING SET,
CONNECTED FEEDBACK VERTEX SET.

Let us also note that the dependence on & for many of the problems listed
in Theorem will be improved to single-exponential in Chapter Also,
the running time of the algorithm for DOMINATING SET will be improved
from 4% - kM . to 3% . kO .,

As the reader probably observed, dynamic-programming algorithms on
graphs of bounded treewidth are very similar to each other.
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The main challenge for most of the problems is to understand what
information to store at nodes of the tree decomposition. Obtaining for-
mulas for forget, introduce and join nodes can be a tedious task, but is
usually straightforward once a precise definition of a state is established.

It is also worth giving an example of a problem which cannot be solved
efficiently on graphs of small treewidth. In the STEINER FOREST problem we
are given a graph G and a set of pairs (si,t1),...,(sp,tp). The task is to find
a minimum subgraph F' of G such that each of the pairs is connected in F.
STEINER TREE is a special case of STEINER FOREST with s; = -+ = 5.
The intuition behind why a standard dynamic programming approach on
graphs of constant treewidth does not work for this problem is as follows.
Suppose that we have a set of vertices S = {s;}1<;<, separated from vertices
T = {t;}1<i<p by a bag of tree decomposition of size 2. Since all paths from
S to T must pass through the bag of size 2, the final solution F' contains
at most two connected components. Any partial solution divides the vertices
of S into two parts based on which vertex in the separating bag they are
connected to. Thus it seems that to keep track of all partial solutions for the
problem, we have to compute all possible ways the set S can be partitioned
into two subsets corresponding to connected components of F', which is 27.
Since p does not depend on the treewidth of G, we are in trouble. In fact,
this intuition is supported by the fact that STEINER FOREST is NP-hard on
graphs of treewidth at most 3, see [26]. In Section we also give examples
of problems which are W[1]-hard parameterized by the treewidth of the input
graph.

Finding faster dynamic-programming strategies can be an interesting chal-
lenge and we will discuss several nontrivial examples of such algorithms in
Chapter [TI} However, if one is not particularly interested in obtaining the
best possible running time, then there exist meta-techniques for designing
dynamic-programming algorithms on tree decompositions. These tools we
discuss in the next section.

7.4 Treewidth and monadic second-order logic

As we have seen in the previous sections, many optimization problems
are fixed-parameter tractable when parameterized by the treewidth. Algo-
rithms for this parameterization are in the vast majority derived using the
paradigm of dynamic programming. One needs to understand how to suc-
cinctly represent necessary information about a subtree of the decomposition
in a dynamic-programming table. If the size of this table turns out to be
bounded by a function of the treewidth only, possibly with some polynomial
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factors in the total graph size, then there is hope that a bottom-up dynamic-
programming procedure can compute the complete answer to the problem. In
other words, the final outcome can be obtained by consecutively assembling
information about the behavior of the problem in larger and larger subtrees
of the decomposition.

The standard approach to formalizing this concept is via tree automata.
This leads to a deep theory linking logic on graphs, tree automata, and
treewidth. In this section, we touch only the surface of this subject by high-
lighting the most important results, namely Courcelle’s theorem and its op-
timization variant.

Intuitively, Courcelle’s theorem provides a unified description of properties
of a problem that make it amenable to dynamic programming over a tree de-
composition. This description comes via a form of a logical formalism called
Monadic Second-Order logic on graphs. Slightly more precisely, the theorem
and its variants state that problems expressible in this formalism are always
fixed-parameter tractable when parameterized by treewidth. Before we pro-
ceed to stating Courcelle’s theorem formally, we need to understand first how
Monadic Second-Order logic on graphs works.

7.4.1 Monadic second-order logic on graphs

MSO:; for dummies. The logic we are about to introduce is called MSO5.
Instead of providing immediately the formal description of this logic, we first
give an example of an M SO, formula in order to work out the main concepts.
Consider the following formula conn(X), which verifies that a subset X of
vertices of a graph G = (V, F) induces a connected subgraph.

conn(X) = vYQV[(HuEX u €Y Ndyexv ¢ Y)
=(Jeer Juex Jvex inc(u,e) Ainc(v,e) A\ue Y Av ¢ Y))].

Now, we rewrite this formula in English.

For every subset of vertices Y, if X contains both a vertex from Y and a
vertex outside of Y, then there exists an edge e whose endpoints u,v both
belong to X, but one of them is in Y and the other is outside of Y.

One can easily see that this condition is equivalent to the connectivity of
G[X]: the vertex set of G cannot be partitioned into Y and V(G)\Y in such
a manner that X is partitioned nontrivially and no edge of G[X] crosses the
partition.

As we see on this example, MSO, is a formal language of expressing
properties of graphs and objects inside these graphs, such as vertices, edges,
or subsets of them. A formula ¢ of MSO, is nothing else but a string over
some mysterious symbols, which we shall decode in the next few paragraphs.
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One may think that a formula defines a program that can be run on an input
graph, similarly as, say, a C++ program can be run on some text inputﬂ A
C++ program is just a sequence of instructions following some syntax, and an
MSO; formula is just a sequence of symbols constructed using a specified
set of rules. A C++ program can be run on multiple different inputs, and may
provide different results of the computation. Similarly, an MSQOs formula
may be evaluated in different graphs, and it can give different outcomes.
More precisely, an MSOs formula can be true in a graph, or false. The result
of an application of a formula to a graph will be called the evaluation of the
formula in the graph.

Similarly to C++ programs, MSO» formulas have variables which represent
different objects in the graph. Generally, we shall have four types of variables:
variables for single vertices, for single edges, for subsets of vertices, and for
subsets of edges; the last type was not used in formula conn(X). At each
point of the process of evaluation of the formula, every variable is evaluated
to some object of appropriate type.

Note that a formula can have “parameters” variables that are given from
“outside”, whose properties we verify in the graph. In the conn(X) example
such a parameter is X, the vertex subset whose connectivity is being tested.
Such variables will be called free variables of the formula. Note that in order to
properly evaluate the formula in a graph, we need to be given the evaluation of
these variables. Most often, we will assume that the input graph is equipped
with evaluation of all the free variables of the considered MSQO5 formula,
which means that these evaluations are provided together with the graph.

If we already have some variables in the formula, we can test their mutual
interaction. As we have seen in the conn(X) example, we can for instance
check whether some vertex u belongs to some vertex subset Y (u € Y), or
whether an edge e is incident to a vertex u (inc(u,e)). These checks can
be combined using standard Boolean operators such as — (negation, logical
NOT), A (conjunction, logical AND), Vv (disjunction, logical OR), = (impli-
cation).

The crucial concept that makes MSQO; useful for expressing graph prop-
erties are quantifiers. They can be seen as counterparts of loops in standard
programming languages. We have two types of quantifiers, V and 3. Each
quantifier is applied to some subformula 1), which in the programming lan-
guage analogy is just a block of code bound by the loop. Moreover, every
quantifier introduces a new variable over which it iterates. This variable can
be then used in the subformula.

Quantifier V is called the universal quantifier. Suppose we write a formula
Vvev ¥, where 1) is some subformula that uses variable v. This formula should
be then read as “For every vertex v in the graph, ¢ holds.” In other words,
quantifier V,cy iterates through all possible evaluations of variable v to a
vertex of the graph, and for each of them it is checked whether 1 is indeed

2 For a reader familiar with the paradigm of functional programming (languages like Lisp
or Haskell), an analogy with any functional language would be more appropriate.
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true. If this is the case for every evaluation of v, then the whole formula
Vvev ¥ is true; otherwise it is false.

Quantifier 3, called the ezistential quantifier, works sort of similarly. For-
mula 3,cy ¢ should be read as “There exists a vertex v in the graph, such
that ¢ holds.” This means that 3,cy iterates through all possible evaluations
of variable v to a vertex of the graph, and verifies whether there is at least
one for which ¢ is true.

Of course, here we just showed examples of quantification over variables
for single vertices, but we can also quantify over variables for single edges
(e.8., Veer/Jeck), vertex subsets (e.g., Vxcv/Ixcv), or edge subsets (e.g.,
Vece/3cck). Standard Boolean operators can be also used to combine larger
formulas; see for instance our use of the implication in formula conn(X).

We hope that the reader already understands the basic idea of MSOs as a
(programming) language for expressing graph properties. We now proceed to
explaining formally the syntax of MSO4 (how formulas can be constructed),
and the semantics (how formulas are evaluated). Fortunately, they are much
simpler than for C++.

Syntax and semantics of MSQO,. Formulas of MSO, can use four types
of variables: for single vertices, single edges, subsets of vertices, and subsets
of edges. The subscript 2 in MSOs exactly signifies that quantification over
edge subsets is also allowed. If we forbid this type of quantification, we arrive
at a weaker logic MSO; . The vertex/edge subset variables are called monadic
variables.

Every formula ¢ of MSOj can have free variables, which often will be writ-
ten in parentheses besides the formula. More precisely, whenever we write a
formula of MSO,, we should always keep in mind what variables are as-
sumed to be existent in the context in which this formula will be used. The
sequence of these variables is called the signature over which the formula is
writtenﬂ following our programming language analogy, this is the environ-
ment in which the formula is being defined. Then variables from the signature
can be used in ¢ as free variables. The signature will be denoted by X'. Note
that for every variable in the signature we need to know what is its type.

In order to evaluate a formula ¢ over signature X in a graph G, we need
to know how the variables of X are evaluated in G. By X¢ we will denote the
sequence of evaluations of variables from Y. Evaluation of a single variable x
will be denoted by 2&. Graph G and X together shall be called the structure
in which ¢ is being evaluated. If ¢ is true in structure (G, X¢), then we shall
denote it by

(G, 2% E e,

3 A reader familiar with the foundations of logic in computer science will certainly see
that we are slightly tweaking some definitions so that they fit to our small example. We
do it in order to simplify the description of MSO2 while maintaining basic compliance
with the general literature. In the bibliographic notes we provide pointers to more rigorous
introductions to logic in computer science, where the notions of signature and structure
are introduced properly.
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which should be read as “Structure (G, X%) is a model for ¢.”
Formulas of MSQO» are constructed inductively from smaller subformulas.
We first describe the smallest building blocks, called atomic formulas.

o If u € X is a vertex (edge) variable and X € X is a vertex (edge) set
variable, then we can write formula v € X. The semantics is standard: the
formula is true if and only if u& € X©.

o If u € X is a vertex variable and e € X' is an edge variable, then we can
write formula inc(u, e). The semantics is that the formula is true if and
only if ©“ is an endpoint of €.

e For any two variables x,y € X of the same type, we can write formula
x = y. This formula is true in the structure if and only if 2& = 3©.

Now that we know the basic building blocks, we can start to create larger
formulas. As described before, we can use standard Boolean operators —, A,
V, = working as follows. Suppose that ¢1, @2 are two formulas over the same
signature Y. Then we can write the following formulas, also over X

e Formula —1, where (G, X) = —¢; if and only if (G, %) ¥ .
e Formula ¢; A g, where (G, X¢) = @1 A @y if and only if (G, YY) |= ¢,
and (G, X) = po.
e Formula ¢; V oy, where (G, YY) |= @1 V @ if and only if (G, YY) | ¢,
r (G, X%) = .
e Formula ¢; = o, where (G, £%) |= o1 = ¢ if and only if (G, X¢) = ¢,
implies that (G, X%) = po.

Finally, we can use quantifiers. For concreteness, suppose we have a
formula 1 over signature X’ that contains some vertex variable v. Let
¥ = X"\ {v}. Then we can write the following formulas over X

e Formula ¢y = V,ey ¥. Then (G, X%) |= oy if and only if for every vertex
v® € V(G), it holds that (G, X% v%) = .

e Formula ¢3 = 3,cv 4. Then (G, %) |= 3 if and only if there erists a
vertex v& € V(@) such that (G, X% v) = .

Similarly, we can perform quantification over variables for single edges
(Veer/3eck), vertex subsets (Vxcy/Ixcv), and edge subsets (Yocr/Iock).
The semantics is defined analogously.

Observe that in formula conn(X) we used a couple of notation “hacks”
that simplified the formula, but were formally not compliant to the syntax de-
scribed above. We namely allow some shorthands to streamline writing formu-
las. Firstly, we allow simple shortcuts in the quantifiers. For instance, J,¢ x 9
is equivalent to Jyecy (v € X) A ¢ and V,ex ¢ is equivalent to V,ey (v €
X) = 1. We can also merge a number of similar quantifiers into one, e.g.,
3x,.x,cv is the same as Ix, cvIx,cv. Another construct that we can use is
the subset relation X C Y it can be expressed as Vyey (v € X) = (v € Y),
and similarly for edge subsets. We can also express the adjacency relation be-
tween two vertex variables: adj(u,v) = (u # v) A (3eep inc(u, €) Ainc(v, €)).
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Finally, we use x # y for —(z = y) and = ¢ X for —(z € X). The reader is
encouraged to use his or her own shorthands whenever it is beneficial.

Examples. Let us now provide two more complicated examples of graph
properties expressible in MSO5. We have already seen how to express that a
subset of vertices induces a connected graph. Let us now look at 3-colorability.
To express this property, we need to quantify the existence of three vertex
subsets X7, X5, X3 which form a partition of V, and where each of them is
an independent set.

3colorability = 3x, x, x,cv partition(X;, Xo, X3)A
indp(X1) A indp(Xs) A indp(X3).

Here, partition and indp are two auxiliary subformulas. Formula partition
has three vertex subset variables X7, X5, X3 and verifies that (X, Xa, X3) is
a partition of the vertex set V. Formula indp verifies that a given subset of
vertices is independent.

partition(X;, Xs, X3) = Veev[(ve X1 Av ¢ XaAv ¢ X3)
\/(U¢X1/\’U€X2/\U¢X3)
\/(U¢X1 /\U%XQ/\UGXg)];

indp(X) = Vypex ~adj(u,v).

Second, let us look at Hamiltonicity: we would like to write a formula that
is true in a graph G if and only if G admits a Hamiltonian cycle. For this,
let us quantify existentially a subset of edges C' that is supposed to comprise
the edges of the Hamiltonian cycle we look for. Then we need to verify that
(a) C induces a connected graph, and (b) every vertex of V is adjacent to
exactly two different edges of C.

hamiltonicity = IJocg connE(C) AV,cy deg2(v, C).

Here, connE(C) is an auxiliary formula that checks whether the graph (V, C)
is connected (using similar ideas as for conn(X)), and deg2(v,C) verifies
that vertex v has exactly two adjacent edges belonging to C"
connE(C)= Vycy [(Guevu€Y ATyevvé¢y)
= (Jeeo Juey ugy inc(u, e) Ainc(v, e))];

deg2(v,C) = 3., .erec [(e1 # €2) Ainc(v, e1) Ainc(v, e2)A

(Vesec inc(v,e3) = (e1 = e3 V e2 = e3))].
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7.4.2 Courcelle’s theorem

In the following, for a formula ¢ by ||¢|| we denote the length of the encoding
of ¢ as a string.

Theorem 7.11 (Courcelle’s theorem, [98]). Assume that ¢ is a formula
of MSO3 and G is an n-vertex graph equipped with evaluation of all the free
variables of p. Suppose, moreover, that a tree decomposition of G of width t
is provided. Then there exists an algorithm that verifies whether ¢ is satisfied
in G in time f(||¢||,t) - n, for some computable function f.

The proof of Courcelle’s theorem is beyond the scope of this book, and
we refer to other sources for a comprehensive presentation. As we will see
later, the requirement that G be given together with its tree decomposition
is not necessary, since an optimal tree decomposition of G can be computed
within the same complexity bounds. Algorithms computing treewidth will be
discussed in the next section and in the bibliographic notes.

Recall that in the previous section we constructed formulas 3colorability
and hamiltonicity that are satisfied in G if and only if G is 3-colorable
or has a Hamiltonian cycle, respectively. If we now apply Courcelle’s theo-
rem to these constant-size formulas, we immediately obtain as a corollary
that testing these two properties of graphs is fixed-parameter tractable when
parameterized by treewidth.

Let us now focus on the VERTEX COVER problem: given a graph G' and
integer k, we would like to verify whether G admits a vertex cover of size at
most k. The natural way of expressing this property in MSOs is to quantify
existentially k vertex variables, representing vertices of the vertex cover, and
then verify that every edge of G has one of the quantified vertices as an
endpoint. However, observe that the length of such a formula depends linearly
on k. This means that a direct application of Courcelle’s theorem gives only
an f(k,t) - n algorithm, and not an f(¢) - n algorithm as was the case for the
dynamic-programming routine of Corollary Note that the existence of an
f(k,t) - n algorithm is only a very weak conclusion, because as we already
have seen in Section [3.1] even the simplest branching algorithm for VERTEX
COVER runs in time O(2% - (n +m)).

Therefore, we would rather have the following optimization variant of
the theorem. Formula ¢ has some free monadic (vertex or edge) variables
X1,Xs,...,X,, which correspond to the sets we seek in the graph. In
the VERTEX COVER example we would have one vertex subset variable
X that represents the vertex cover. Formula ¢ verifies that the variables
X1, Xo, ..., X, satisfy all the requested properties; for instance, that X in-
deed covers every edge of the graph. Then the problem is to find an evalua-
tion of variables X1, Xo, ..., X, that minimizes/maximizes the value of some
arithmetic expression a(|Xi|,|X2l,...,|X,|) depending on the cardinalities
of these sets, subject to ¢(X1, Xa,...,X,) being true. We will focus on «
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being an affine function, that is, a(x1, 22, ..., x,) = ag+ Y ., a;x; for some
agp,ai,...,ap € R.

The following theorem states that such an optimization version of Cour-
celle’s theorem indeed holds.

Theorem 7.12 ([19]). Let ¢ be an MSOs formula with p free monadic vari-
ables X1,Xo,...,X,, and let a(x1, 2, ...,x,) be an affine function. Assume
that we are given an n-vertex graph G together with its tree decomposition
of width t, and suppose G is equipped with evaluation of all the free vari-
ables of ¢ apart from X1, Xo,...,X,. Then there exists an algorithm that in
flell, t)-n finds the minimum and mazimum value of a(|X1|, | Xal, - .., |Xp|)
for sets X1, Xo, ..., X, for which o(X1,Xo,...,X,) is true, where f is some
computable function.

To conclude our VERTEX COVER example, we can now write a simple
constant-length formula vcover(X) that verifies that X is a vertex cover
of G: vecover(X) = Veep Juex inc(z, e). Then we can apply Theorem
to vecover and (| X|) = |X|, and infer that finding the minimum cardinality
of a vertex cover can be done in f(¢) - n time, for some function f.

Note that both in Theorem [Z.1T]and in Theorem [f.12] we allow the formula
to have some additional free variables, whose evaluation is provided together
with the graph. This feature can be very useful whenever in the considered
problem the graph comes together with some predefined objects, e.g., ter-
minals in the STEINER TREE problem. Observe that we can easily write an
MSO; formula Steiner(K, F') for a vertex set variable K and edge set vari-
able F', which is true if and only if the edges from F' form a Steiner tree
connecting K. Then we can apply Theorem [7.12] to minimize the cardinality
of F subject to Steiner (K, F') being true, where the vertex subset K is given
together with the input graph. Thus we can basically re-prove Theorem
however without any explicit bound on the running time.

To conclude, let us deliberate briefly on the function f in the bound on
the running time of algorithms provided by Theorems [7.11] and [7.12] Un-
fortunately, it can be proved that this function has to be nonelementary; in
simple words, it cannot by bounded by a folded ¢ times exponential func-
tion for any constant c. Generally, the main reason why the running time
must be so high is the possibility of having alternating sequences of quanti-
fiers in the formula . Slightly more precisely, we can define the quantifier
alternation of a formula ¢ to be the maximum length of an alternating se-
quence of nested quantifiers in ¢, i.e., V3V 3 ... (we omit some technicalities
in this definition). Then it can be argued that formulas of quantifier alter-
nation at most ¢ give rise to algorithms with at most c-times exponential
function f, where ¢ depends linearly on g. However, tracing the exact bound
on f even for simple formulas ¢ is generally very hard, and depends on the
actual proof of the theorem that is used. This exact bound is also likely to
be much higher than optimal. For this reason, Courcelle’s theorem and its
variants should be regarded primarily as classification tools, whereas design-
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ing efficient dynamic-programming routines on tree decompositions requires
“getting your hands dirty” and constructing the algorithm explicitly.

7.5 Graph searching, interval and chordal graphs

In this section we discuss alternative interpretations of treewidth and path-
width, connected to the concept of graph searching, and to the classes of
interval and chordal graphs. We also provide some tools for certifying that
treewidth and pathwidth of a graph is at least/at most some value. While
these results are not directly related to the algorithmic topics discussed in
the book, they provide combinatorial intuition about the considered graph
parameters that can be helpful when working with them.

Alternative characterizations of pathwidth. We start with the concept
of graph searching. Suppose that G is a graph representing a network of tun-
nels where an agile and omniscient fugitive with unbounded speed is hiding.
The network is being searched by a team of searchers, whose goal is to find
the fugitive. A move of the search team can be one of the following:

e Placement: We can take a searcher from the pool of free searchers and
place her on some vertex v.

e Remowal: We can remove a searcher from a vertex v and put her back to
the pool of free searchers.

Initially all the searchers are free. A search program is a sequence of moves
of searchers. While the searchers perform their program, the fugitive, who
is not visible to them, can move between the nodes of the network at un-
bounded speed. She cannot, however, pass through the vertices occupied by
the searchers, and is caught if a searcher is placed on a vertex she currently oc-
cupies. Searchers win if they launch a search program that guarantees catch-
ing the fugitive. The fugitive wins if she can escape the searchers indefinitely.
Another interpretation of the same game is that searchers are cleaning a
network of tunnels contaminated with a poisonous gas. Initially all the edges
(tunnels) are contaminated, and an edge becomes clear if both its endpoints
are occupied by searchers. The gas, however, spreads immediately between
edges through vertices that are not occupied by any searcher. If a cleaned edge
becomes contaminated in this manner, we say that it is recontaminated. The
goal of the searchers is to clean the whole network using a search program.
These interpretations can be easily seen to be equivalentﬂ and they lead
to the following definition of a graph parameter. The node search number of
a graph G is the minimum number of searchers required to clean G from gas

4 Strictly speaking, there is a boring corner case of nonempty edgeless graph, where no gas
is present but one needs a searcher to visit one by one all vertices to catch the fugitive.
In what follows we ignore this corner case, as all further results consider only a positive
number of searchers.
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or, equivalently, to catch an invisible fugitive in G. For concreteness, from
now on we will work with the gas cleaning interpretation.

An important question in graph searching is the following: if k searchers
can clean a graph, can they do it in a monotone way, i.e., in such a way that
no recontamination occurs? The answer is given by the following theorem of
LaPaugh; its proof lies beyond the scope of this book.

Theorem 7.13 ([315]). For any graph G, if k searchers can clear G, then
k searchers can clear G in such a manner that no edge gets recontaminated.

Let us now proceed to the class of interval graphs. A graph G is an interval
graph if and only if one can associate with each vertex v € V(@) a closed
interval I, = [l,, 7], L, < ry, on the real line, such that for all u,v € V(G),
u # v, we have that wv € E(G) if and only if I, N I, # (. The family
of intervals Z = {I, },ev is called an interval representation or an interval
model of G. By applying simple transformations to the interval representation
at hand, it is easy to see that every interval graph on n vertices has an interval
representation in which the left endpoints are distinct integers 1,2,...,n. We
will call such a representation canonical.

Recall that a graph G’ is a supergraph of a graph G if V(G) C V(G') and
E(G) C E(G"). We define the interval width of a graph G as the minimum
over all interval supergraphs G’ of G of the maximum clique size in G’. That
is,

interval-width(G) = min {w(G’) : G C G’ AG' is an interval graph} .

Here, w(G") denotes the maximum size of a clique in G’. In other words, the
interval width of G is at most k if and only if there is an interval supergraph
of G with the maximum clique size at most k. Note that in this definition we
can assume that V(G’) = V(G), since the class of interval graphs is closed
under taking induced subgraphs.

We are ready to state equivalence of all the introduced interpretations of
pathwidth.

Theorem 7.14. For any graph G and any k > 0, the following conditions
are equivalent:

(i)  The node search number of G is at most k + 1.
(i¢)  The interval width of G is at most k + 1.
(i3t)  The pathwidth of G is at most k.

Proof. (i) = (#i). Without loss of generality, we can remove from G all iso-
lated vertices. Assume that there exists a search program that cleans G using
at most k£ + 1 searchers. By Theorem we can assume that this search is
monotone, i.e., no edge becomes recontaminated. Suppose the program uses
p moves; we will naturally index them with 1,2,...,p. Let z1,z2,...,2, be
the sequence of vertices on which searchers are placed/from which searchers
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are removed in consecutive moves. Since G has no isolated vertices, each ver-
tex of G has to be occupied at some point (to clear the edges incident to
it) and hence it appears in the sequence x1,z9, ..., 2. Also, without loss of
generality we assume that each placed searcher is eventually removed, since
at the end we can always remove all the searchers.

We now claim that we can assume that for every vertex v € V(G), a
searcher is placed on v exactly once and removed from v exactly once. Let us
look at the first move j when an edge incident to v is cleaned. Note that it
does not necessarily hold that x; = v, but vertex v has to be occupied after
the j-th move is performed. Let j; < j be the latest move when a searcher is
placed at v before or at move j; in particular z;, = v. Let jo > j be the first
move when a searcher is removed from v after move j; in particular z;, = v.
Since j is the first move when an edge incident to v is cleaned, we have
that before j; all the edges incident to v are contaminated. Therefore, we
can remove from the search program any moves at vertex v that are before
Jj1, since they actually do not clean anything. On the other hand, observe
that at move js all the edges incident to v must be cleaned, since otherwise a
recontamination would occur. These edges stay clean to the end of the search,
by the monotonicity of our search program. Therefore, we can remove from
the search program all the moves at v that occur after jo, since they actually
do not clean anything.

For every vertex v, we define £(v) as the first move when a searcher is
placed on v, and r(v) as the move when a searcher is removed from v. Now
with each vertex v we associate an interval I, = [¢(v),r(v) — 1]; note that
integers contained in [, are exactly moves after which v is occupied. The
intersection graph Gj of intervals T = {I,},cv is, of course, an interval
graph. This graph is also a supergraph of G for the following reason. Since
every edge wv is cleared, there is always a move j,, after which both v and
v are occupied by searchers. Then j,, € I, N I,, which means that I,, and I,
have nonempty intersection. Finally, the maximum size of a clique in Gy is
the maximum number of intervals intersecting in one point, which is at most
the number of searchers used in the search.

(ii) = (i1i). Let G be an interval supergraph of G with the maximum
clique size at most k+ 1, and let Z = {I,, },cv be the canonical representation
of Gy. For i € {1,...,n}, we define X; as the set of vertices v of G whose
corresponding intervals I, contain i. All intervals associated with vertices of
X, pairwise intersect at ¢, which means that X is a clique in G. Consequently
|X;| < k+ 1. We claim that (X3,...,X,) is a path decomposition of G.
Indeed, property (P1) holds trivially. For property (P2), because Gy is a
supergraph of G, for every edge wv € E(G) we have I, NI, # 0. Since
left endpoints of intervals of Z are 1,2,...,n, there exists also some i €
{1,2,...,n} that belongs to I, N I,. Consequently X; contains both u and
v. For property (P3), from the definition of sets X; it follows that, for every
vertex v, the sets containing v form an interval in {1,2,...,n}.
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(#i7) = (4). Let P = (X1,Xs,...,X,) be a path decomposition of G of
width at most k. We define the following search program for k + 1 searchers.
First, we place searchers on X;. Then, iteratively for i = 2,3, ..., r, we move
searchers from X;_; to X; by first removing all the searchers from X;_; \
X;, and then placing searchers on X; \ X;_1. Note that in this manner the
searchers are all the time placed on the vertices of X;_1 N X;. Moreover, since
the sizes of bags X; are upper bounded by k-+1, we use at most k+1 searchers
at a time. We now prove that this search program cleans the graph.

By property (P2), for every edge uv € E(G) there exists a bag X; such
that {u,v} C X;. Hence, every edge gets cleaned at some point. It remains
to argue that no recontamination happens during implementation of this
search program. For the sake of contradiction, suppose that recontamination
happens for the first time when a searcher is removed from some vertex
u € X;—1 \ X;, for some ¢ > 2. This means that u has to be incident to some
edge wv that is contaminated at this point. Again by the property (P2),
there exists some bag X; such that {u,v} € X;. However, since u € X;_;
and u ¢ X, then by property (P3) u can only appear in bags with indices
1,2,...,i— 1. Hence j < i — 1, which means that edge uv has been actually
already cleaned before, when searchers were placed on the whole bag Xj;.
Since we assumed that we consider the first time when a recontamination
happens, we infer that edge uv must have remained clean up to this point, a
contradiction. O

Alternative characterizations of treewidth. A similar set of equivalent
characterizations is known for the treewidth. The role of interval graphs is
now played by chordal graphs. Let us recall that a graph is chordal if it does
not contain an induced cycle of length more than 3, i.e., every cycle of length
more than 3 has a chord. Sometimes chordal graphs are called triangulated.
It is easy to prove that interval graphs are chordal, see Exercise

We define the chordal width of a graph G as the minimum over all chordal
supergraphs G’ of G of the maximum clique size in G’. That is,

chordal-width(G) = min {w(G’) : G C G' AG' is a chordal graph} .

As we will see soon, the chordal width is equal to treewidth (up to a +1 sum-
mand), but first we need to introduce the notion of graph searching related
to the treewidth.

The rules of the search game for treewidth are very similar to the node
searching game for pathwidth. Again, a team of searchers, called in this set-
ting cops, tries to capture in a graph an agile and omniscient fugitive, called
in this setting a robber. The main difference is that the cops actually know
where the robber is localized. At the beginning of the game cops place them-
selves at some vertices, and then the robber chooses a vertex to start her
escape. The game is played in rounds. Let us imagine that cops are equipped
with helicopters. At the beginning of each round, some subset of cops take off
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in their helicopters, declaring where they will land at the end of the round.
While the cops are in the air, the robber may run freely in the graph; how-
ever, she cannot pass through vertices that are occupied by cops that are not
airborne. After the robber runs to her new location, being always a vertex,
the airborne cops land on pre-declared vertices. As before, the cops win if
they have a procedure to capture the robber by landing on her location, and
the robber wins if she can avoid cops indefinitely.

Intuitively, the main difference is that if cops are placed at some set S C
V(G), then they know in which connected component of G — S the robber
resides. Hence, they may concentrate the chase in this component. In the
node search game the searchers lack this knowledge, and hence the search
program must be oblivious to the location of the fugitive. It is easy to see
that when cops do not see the robber, then this reduces to an equivalent
variant of the node search game. However, if they see the robber, they can
gain a lot. For example, two cops can catch a visible robber on any tree, but
catching an invisible fugitive on an n-vertex tree can require logs n searchers;
see Exercise [[.101

Finally, let us introduce the third alternative characterization of treewidth,
which is useful in showing lower bounds on this graph parameter. We say that
two subsets A and B of V(G) touch if either they have a vertex in common,
or there is an edge with one endpoint in A and second in B. A bramble is the
family of pairwise touching connected vertex sets in G. A subset C' C V(G)
covers a bramble B if it intersects every element of B. The least number of
vertices covering bramble B is the order of B.

It is not difficult to see that if G has a bramble B of order k£ + 1, then k
cops cannot catch the robber. Indeed, during the chase the robber maintains
the invariant that there is always some X € B that is free of cops, and in
which she resides. This can be clearly maintained at the beginning of the
chase, since for every set of initial position of cops there is an element X of
B that will not contain any cops, which the robber can choose for the start.
During every round, the robber examines the positions of all the cops after
landing. Again, there must be some Y € B that will be disjoint from the set
of these positions. If X = Y then the robber does not need to move, and
otherwise she runs through X (which is connected and free from cops at this
point) to a vertex shared with ¥ or to an edge connecting X and Y. In this
manner the robber can get through to the set Y, which is free from the cops
both at this point and after landing.

This reasoning shows that the maximum order of a bramble in a graph G
provides a lower bound on the number of cops needed in the search game on
G, and thus on the treewidth of GG. The following deep result of Seymour and
Thomas shows that this lower bound is in fact tight. We state this theorem
without a proof.

Theorem 7.15 ([414]). For every k > 0 and graph G, the treewidth of G is
at least k if and only if G contains a bramble of order at least k + 1.
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Now we have gathered three alternative characterizations of treewidth,
and we can state the analogue of Theorem [7.14] for this graph parameter.
The result is given without a proof because of its technicality, but the main
steps are discussed in Exercise

Theorem 7.16. For any graph G and any k > 0, the following conditions
are equivalent:

(¢1)  The treewidth of G is at most k.

(1¢)  The chordal width of G is at most k + 1.

(75i) k+1 cops can catch a visible robber on G.

(iv)  There is no bramble of order larger than k+1 in G.

7.6 Computing treewidth

In all the applications of the treewidth we discussed in this chapter, we were
assuming that a tree decomposition of small width is given as part of the
input. A natural question is how fast we can find such a decomposition.
Unfortunately, it turns out that it is NP-hard to compute the treewidth of a
given graph, so we need to resort to FPT or approximation algorithms.

In order to make our considerations more precise, let us consider the
TREEWIDTH problem defined as follows: we are given a graph G and an
integer k, and the task is to determine whether the treewidth of G is at
most k. There is a “simple” argument why TREEWIDTH is fixed-parameter
tractable: It follows from the results of the Graph Minors theory of Robert-
son and Seymour, briefly surveyed in Chapter [6] More precisely, it is easy
to see that treewidth is a minor-monotone parameter in the following sense:
for every graph G and its minor H, it holds that tw(H) < tw(G) (see Ex-
ercise . Hence if we define Gy to be the class of graphs of treewidth at
most k, then Gy, is closed under taking minors. By Corollary there ex-
ists a set of forbidden minors Forb(Gy), which depends on k only, such that
a graph has treewidth & if and only if it does not contain any graph from
Forb(Gy) as a minor. Hence, we can apply the algorithm of Theorem to
each H € Forb(Gy,) separately, verifying in f(H) - |V (G)|® time whether it is
contained in G as a minor. Since Forb(Gy) depends only on k, both in terms
of its cardinality and the maximum size of a member, this algorithm runs in
g(k) - |V(Q)|? for some function g. Similarly to the algorithms discussed in
Section this gives only a nonuniform FPT algorithm — Corollary
does not provide us any means of constructing the family Gy, or even bound-
ing its size.

Alternatively, one could approach the TREEWIDTH problem using the
graph searching game that we discussed in Section This direction quite
easily leads to an algorithm with running time n®*); the reader is asked to
construct it in Exercise [7.26]
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It is, nonetheless, possible to obtain a uniform, constructive algorithm for
the TREEWIDTH problem. However, this requires much more involved tech-
niques and technical effort. In the following theorem we state the celebrated
algorithm of Bodlaender that shows that TREEWIDTH is FPT.

Theorem 7.17 ([45]). There ezists an algorithm that, given an n-vertex

graph G and integer k, runs in time kO®") 0 and either constructs a tree
decomposition of G of width at most k, or concludes that tw(G) > k.

Generally, in the literature there is a variety of algorithms for comput-
ing good tree decompositions of graphs. The algorithm of Theorem is
the fastest known ezact parameterized algorithm, meaning that it computes
the exact value of the treewidth. Most other works follow the direction of
approrimating treewidth. In other words, we relax the requirement that the
returned decomposition has width at most k by allowing the algorithm to
output a decomposition with a slightly larger width. In exchange we would
like to obtain better parameter dependence than k°**) which would be a
dominating factor in most applications.

In this section we shall present the classical approximation algorithm for
treewidth that originates in the work of Robertson and Seymour. More pre-
cisely, we prove the following result.

Theorem 7.18. There exists an algorithm that, given an n-vertex graph G
and integer k, runs in time O(8%k? - n?) and either constructs a tree decom-
position of G of width at most 4k + 4, or concludes that tw(G) > k.

We remark that the running time of algorithm of Theorem depends
linearly on the size of the graph, whereas in Theorem the dependence is
quadratic. Although in this book we usually do not investigate precisely the
polynomial factors in the running time bounds, we would like to emphasize
that this particular difference is important in applications, as the running
time of most dynamic-programming algorithms on tree decompositions de-
pends linearly on the graph size, and, consequently, the n? factor coming
from Theorem [7.1§] is a bottleneck. To cope with this issue, very recently
a 5-approximation algorithm running in time 2°*) . n has been developed
(see also the bibliographic notes at the end of the chapter); however, the
techniques needed to obtain such a result are beyond the scope of this book.

The algorithm of Theorem [7.18]is important not only because it provides
an efficient way of finding a reasonable tree decomposition of a graph, but
also because the general strategy employed in this algorithm has been reused
multiple times in approximation algorithms for other structural graph pa-
rameters. The crux of this approach can be summarized as follows.

e It is easy to see that every n-vertex tree 1" contains a vertex v such
that every connected component of 7' — v has at most 5 vertices.
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A similar fact can be proved for graphs of bounded treewidth. More
precisely, graphs of treewidth at most k£ have balanced separators
of size at most k£ + 1: it is possible to remove k + 1 vertices from
the graph so that every connected component left is “significantly”
smaller than the original graph.

e The algorithm decomposes the graph recursively. At each step we try
to decompose some part of a graph that has only ck vertices on its
boundary, for some constant c.

e The crucial step is to find a small separator of the currently processed
part H with the following property: the separator splits H into two
pieces Hy, Hy so that the boundary of H gets partitioned evenly
between H; and Hs. If for some a > 1, each of H; and Hs contains
only, say, £ vertices of 9(H), then we have [0(H1)|,|0(Hz)| < < +
(k+1); the summand k+1 comes from the separator. If %—F(k—k 1) <
ck, then we can recurse into pieces H; and Ho.

Before we proceed to the proof of Theorem [7.18] we need to introduce
some auxiliary results about balanced separators and separations in graphs
of small treewidth.

7.6.1 Balanced separators and separations

From now on we will work with the notions of separators and separations
in graphs; we have briefly discussed these concepts in Section [7.2] Let us
recall the main points and develop further these definitions. A pair of vertex
subsets (A, B) is a separation in graph G if AU B = V(G) and there is no
edge between A\ B and B\ A. The separator of this separation is A N B,
and the order of separation (A, B) is equal to |[AN B].

We say that (A, B) separates two sets X,Y if X C Aand Y C B. Note that
then every X-Y path, i.e., a path between a vertex from X and a vertex from
Y, has to pass through at least one vertex of AN B. Given this observation,
we may say that a set C C V(G) separates two vertex sets X and Y if every
X-Y path contains a vertex of C. Note that in this definition we allow C to
contain vertices from X or Y. Given C that separates X and Y, it is easy
to construct a separation (A, B) that separates X and Y and has C as the
separator.

For two vertex sets X and Y, by u(X,Y) we denote the minimum size of
a separator separating X and Y, or, equivalently, the minimum order of a
separation separating X and Y. Whenever the graph we refer to is not clear
from the context, we put it as a subscript of the y symbol. By the classic the-
orem of Menger, u(X,Y) is equal to the maximum number of vertex-disjoint
X-Y paths. The value of u(X,Y) can be computed in polynomial time by
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any algorithm for computing the maximum flow in a graph. Moreover, within
the same running time we can obtain both a separation of order u(X,Y") sep-
arating X and Y, as well as a family of u(X,Y) vertex-disjoint X-Y paths
(see also Theorems and .

We now move to our first auxiliary result, which states that graphs of
treewidth at most k£ have balanced separators of size at most k£ + 1. We prove
a slightly more general statement of this fact. Assume that w: V(G) — Rx¢
is a nonnegative weight function on the vertices of G. For a set X C V(G),
let us define w(X) = > . w(u). Let o € (0,1) be any constant. We say
that a set X C V(G) is an a-balanced separator in G if for every connected
component D of G — X, it holds that w(D) < a - w(V(QG)). Informally
speaking, a balanced separator breaks the graph into pieces whose weights
constitute only a constant fraction of the original weight of the graph.

Like trees, graphs of “small” treewidth have “small” balanced separators.
This property is heavily exploited in numerous algorithmic applications
of treewidth.

If we put uniform weights on vertices, then balanced separators split the
graph more or less evenly with respect to the cardinalities of the obtained
pieces. Recall, however, that in the presented strategy for the algorithm of
Theorem [7.18 we would like to split evenly some smaller subset of vertices,
which is the boundary of the currently processed part of the graph. Therefore,
in our applications we will put weights 1 on some vertices of the graph, and
0 on the other. Then balanced separators split evenly the set of vertices that
are assigned weight 1. In other words, what we need is a weighted version of
balanced separators.

We now prove the fact that graphs of small treewidth admit small balanced
separators.

Lemma 7.19. Assume G is a graph of treewidth at most k, and consider a
nonnegative weight function w: V(G) — Rxq on the vertices of G. Then in
G there ezists a %—balanced separator X of size at most k + 1.

Proof. Let T = (T,{Xt}+ev(r)) be a tree decomposition of G' of width at
most k. We prove that one of the bags of T is a %—balanced separator we are
looking for. We start by rooting 7" at an arbitrarily chosen node r. For a node
t of T', let V; be the set of vertices of G contained in the bags of the subtree
T; of T rooted at node ¢ (including ¢ itself). Let us select a node ¢ of T' such
that:

o w(V;) > 3w(V(G)), and subject to
e ¢ is at the maximum distance in T from r.

Observe that such a vertex ¢ exists because root r satisfies the first condition.
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We claim that X; is a %—balanced separator in G. Let t,...,t, be the
children of ¢ in T (possibly p = 0). Observe that every connected component
D of V(G)\ X, is entirely contained either in V/(G)\V;, or in V4, \ X; for some
i €{1,2,...,p}. Since w(V;) > iw(V(G)), then w(V(G) \ V;) < 2w(V(G)).
On the other hand, by the choice of ¢ we have that w(V;,) < sw(V(G))

for every ¢ € {1,...,p}. Consequently, in both cases D is entirely contained
in a set whose weight is at most iw(V(G)), which means that w(D) <
iw(V(Q)). O

The proof of Lemma [7.19 shows that if a tree decomposition of G of width
at most k is given, one can find such a %—balanced separator in polynomial
time. Moreover, the found separator is one of the bags of the given decom-
position. However, in the remainder of this section we will only need the
existential statement.

Recall that in the sketched strategy we were interested in splitting the
currently processed subgraph into two even parts. However, after deleting
the vertices of the separator given by Lemma [7.19] the graph can have more
than two connected components. For this reason, we would like to group these
pieces (components) into two roughly equal halves. More formally, we say that
a separation (A4, B) of G is an a-balanced separationif w(A\B) < a-w(V(G))
and w(B\ A) < - w(V(G)). The next lemma shows that we can focus on
balanced separations instead of separators, at a cost of relaxing % to %
Lemma 7.20. Assume G is a graph of treewidth at most k, and consider a
nonnegative weight function w: V(G) — R>q on the vertices of G. Then in
G there ezists a %—balanced separation (A, B) of order at most k + 1.

Proof. Let X be a %—balanced separator in G of size at most k + 1, given by
Lemma Let D1, Do, ..., D, be the vertex sets of connected components

of G — X. Fori € {1,2,...,p}, let a; = w(D;); recall that we know that
a; < $w(V(G)). By reordering the components if necessary, assume that

a; = az 2 ... 2 ap.

Let ¢ be the smallest index such that Y7 | a; > +w(V(G)), or ¢ = pif no
such index exists. We claim that > 7 ; a; < 2w(V(G)). This is clearly true
if Y0 L a; < 3w(V(G)). Also, if ¢ =1, then Y7, a; = a; < $w(V(G)) and
the claim holds in this situation as well. Therefore, assume that > 7 | a; >
+w(V(G)) and ¢ > 1. By the minimality of ¢, we have that Zq;ll a; <

Iw(V(G)). Hence ay < ag1 < S0 a; < 2w(V(GQ)), s0 3L a; = ag +

Zf;ll a; < 3w(V(GQ)) + 3w(V(G)) = 2w(V(G)). This proves the claim.

We now define A = X UU;_, D; and B = X UUJi_,,, Di- Clearly (A, B)

is a separation of G with X being the separator, so it has order at most &£+ 1.
By the claim from the last paragraph, we have that w(A\ B) = >0, a; <

%W(V(G)). Moreover, either we have that p = ¢ and B\ A =0, or p < ¢
and then Y7 ; a; > 3w(V(G)). In the first case w(B\ A) = 0, and in the

latter case we have that w(B\ A) = >7_ . a; < w(V(G)) — sw(V(G)) =
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2w(V(G)). We conclude that (A, B) is a 2-balanced separation in G of order

at most k + 1. O

From Lemma [7.20] we can infer the following corollary, which will be our
main tool in the proof of Theorem [7.1§]

Corollary 7.21. Let G be a graph of treewidth at most k and let S C V(G)
be a vertex subset with |S| = 3k + 4. Then there exists a partition (Sa, Sp)
of S such that k +2 < |Sal|,|SB| <2k + 2 and pc(Sa,Sp) < k+1.

Proof. Let us define the following weight function w: w(u) =1 if u € S, and
w(u) = 0 otherwise. Let (A, B) be a separation provided by Lemmal7.20] We
know that (A, B) has order at most k+1 and that [(A\ B)NS|, [(B\A)NS| <
%|S| = 2k + %. Since these cardinalities are integral, we in fact have that
[(A\B)NS,|(B\A)NS| <2k+2.

We now define the partition (S4,Sg). We first put (A \ B) N S into Sy
and (B\ A) NS into Sp; in this manner we have at most 2k + 2 vertices in
S4 and at most 2k + 2 vertices in Sp. Then we iteratively examine vertices
of (AN B)N S, and each vertex u € (AN B)N S is assigned to S4 or to Sp,
depending on which of them is currently smaller (or arbitrarily, if they are
equal). Since |S| = 3k +4 <2 (2k + 2), in this manner none of the sets Sy
or Sp can get larger than 2k + 2.

Thus we obtain that |S4| < 2k + 2, so also |Sp| = |S| — |Sa| > k + 2.
Symmetrically |S4| > k+ 2. Finally, observe that separation (A, B) separates
Sa and Sp, which proves that pg(Sa,Sg) <|ANB| <k—+ 1. O

7.6.2 An FPT approximation algorithm for treewidth

Armed with our understanding of balanced separators in graphs of bounded
treewidth, we can proceed to the proof of Theorem [7.18]

Proof (of Theorem . We will assume that the input graph G is con-
nected, as otherwise we can apply the algorithm to each connected compo-
nent of G separately, and connect the obtained tree decompositions arbitrar-
ily. Furthermore, we assume that G has at most kn edges, since otherwise we
can immediately conclude that tw(G) > k; see Exercise[7.15] Let m = |E(G)).

We present a recursive procedure decompose(W,S) for S C W C V(G),
which tries to decompose the subgraph G[W] in such a way that the set S is
contained in one bag of the decomposition. The procedure will work under
the assumption that the following invariants are satisfied:

(i) |S| <3k+4and W\ S #0;
(ii) both G[W] and G[W \ S] are connected;
(iii) S = Ng(W \ S). In other words, every vertex of S is adjacent to some
vertex of W'\ S, and the vertices of W\ S do not have neighbors outside
w.
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These invariants exactly express the properties that we want to maintain
during the algorithm: at each point we process some connected subgraph of
G, which communicates with the rest of G only via a small interface S. The
output of procedure decompose(W, S) is a rooted tree decomposition Ty,s
of the graph G[W], which has width at most 4k + 4 and satisfies S C X,
where 7 is the root of Ty, ¢. The whole algorithm then boils down to calling
decompose(V(G), 0); note that the invariants in this call are satisfied since
we assumed G to be connected.

We now explain how procedure decompose(W,S) is implemented. The
first step is to construct a set S with the following properties:

(a) S C S c W, that is, Sisa proper superset of S;

(b) |S]| < 4k + 5;

(c) every connected component of G[W \ S] is adjacent to at most 3k + 4
vertices of 5.

Intuitively, the set S is going to form the root bag of the constructed de-
composition. Property (]ED is needed to ensure small width, and property
will be essential for maintaining invariant (fif) when we recurse into connected
components of G[W'\ §] So far it is not clear why we require that S contains
at least one more vertex than S. This property will be very helpful when
estimating the running time of the algorithm. In particular, this will allow
us to show that the number of nodes in the constructed tree decomposition
is at most n. R

Construction of S is very simple if |S| < 3k 4 4. We just pick an arbitrary
vertex u € W\ S (which exists since W \ S # ), and we put 5 = S U {u}.
Then |§ | < 3k+4. It is straightforward to verify that properties (jaj), (]Eb, and
are satisfied in this case.

Assume then that |S| = 3k + 4. If tw(G) < k, then also tw(G[W]) < k,
so by Lemma there exists a partition (S4,Sp) of S such that k +2 <
ISal,|SB] < 2k + 2 and pgw(Sa, Sp), the minimum size of a separator
separating S4 and Sp in G[W], is at most k& + 1. The algorithm iterates
through all the 23#*4 partitions of S into two parts, and applies a max-flow
algorithm to verify whether the minimum order of a separation of G[W]
separating the sides does not exceed k + 1. If no partition satisfying the
properties expected from (5S4, Sp) has been found, then by Lemma, we
can safely conclude that tw(G[W]) > k. Hence tw(G) > k, and the whole
algorithm can be terminated.

Assume then that a partition (S4,Sp) satisfying the required properties
has been obtained. This means that there exists some separation (A, B) in
G[W] that has order at most k£ + 1 and separates S from Sp; see Fig.
Moreover, this separation was computed during the application of a max-
flow algorithm when partition (S4,Sp) was considered. We now put S =
SU(ANB). Clearly |S| < |S|+|ANB| < 3k+4+k+1 = 4k +5, so property
(]E[) is satisfied. For property , let D be the vertex set of a connected
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Fig. 7.5: Situation in procedure decompose(W,S) when |S| = 3k + 4

-~

component of G[W \ S]. Since D is connected in G[W] and disjoint from
AN B, it follows that D C A\ B or D C B\ A. Assume the former; the proof
for the second case is symmetric. Then the vertices of S that are adjacent to
D can be only contained in (A\ B) NS or in AN B. However, we have that

[(A\B)NS|+|ANB| < |Sal+|ANB| < (2k+2)+ (k+1) =3k + 3,

so property (c) indeed holds.

For property (al), we just need to check that S contains at least one more
vertex than S. Since |S4|,|Sg| > k+2and |[ANB| < k+1, sets Sa\ (AN B)
and Sp\ (AN B) are nonempty. Let uq € Sa\(ANB) and up € S\ (ANB)
be arbitrarily chosen vertices. By invariants and , there is a path P in
G[W] that starts in u 4, ends in up, and whose internal vertices are contained
in W\ S. Indeed, u4 has a neighbor «/, in W\ S, up has a neighbor u/; in
W\ S, whereas v/y and w5 can be connected by a path inside G[W \ S] due
to the connectivity of this graph. As (A, B) separates S4 from Sg, path P
contains at least one vertex from A N B. This vertex can be neither u4 nor
up, since these vertices do not belong to AN B. Hence AN B contains at least
one internal vertex of P, which belongs to W\ S; this proves property @

Once the set S is constructed, procedure decompose (W, S) can be com-
pleted easily. Let Dy, Do, ..., D, be the vertex sets of connected components

~.

of G[W \ S| (possibly p = 0). For each i = 1,2,...,p, we call recursively
procedure decompose(Ng[D;], Na(D;)). Satisfaction of invariants for these
calls follows directly from the definition of sets D;, invariant for the call
decompose (W, S), and properties @) and of S. Let 7; be the tree de-
composition obtained from the call decompose(Ng[D;], N¢(D;)), and let r;
be its root; recall that X,, contains N(D;). We now obtain a tree decom-
position Tw,s of G[W] as follows: create a root r with bag X, = S, and for
every i = 1,2,...,p attach 7; below r using edge rr;. From the construction
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it easily follows that 7yw,s is a tree decomposition of G[W]. Moreover, it has
width at most 4k + 4, since |§| < 4k + 5 (property (]Eb) and every tree de-
composition 7; has width at most 4k + 4. Finally, we have that X, = Sos.
Hence Ty, s has all the required properties and can be output as the result of
decompose (W, S). Note that p = 0 represents the base case; in this situation
the tree decomposition Ty, s of G[W] is a single node with the bag X, = S.

This concludes the description of the algorithm, and we are left with
estimating its running time. For every call of decompose(W,S) when
|S| = 3k + 4, we iterate through 23%+* partitions of S into two sides. For
each partition we apply, say, the Ford-Fulkerson algorithm in the graph
G[W] to compute the maximum vertex flow between the sides. This algo-
rithm runs a number of iterations; each iteration takes O(n + m) time and
either concludes that the currently found flow is maximum, or augments it
by 1. Since we are interested only in situations when the maximum flow is of
size at most k£ + 1, we may terminate the computation after k 4+ 2 iterations
(see also Theorem . Hence, each application of the Ford-Fulkerson al-
gorithm takes time O(k(n + m)) = O(k?n), since m < kn. In total, this
gives time O(23T4%2 . n) for computing set S. All the other operations
performed in decompose(W,S), like partitioning G[W \ §] into connected
components or joining the decompositions obtained in the recursive calls,
can be easily implemented in O(n + m) = O(kn) time. In total, operations
performed in procedure decompose(W,S) (excluding subcalls) take time
O(23k+4k2 . n) = O(8kk2 - n).

Hence, it remains to prove an upper bound on how many times procedure
decompose (W, S) is called. Observe that each call of decompose(W,S)
creates exactly one new node of the output tree decomposition of G (the
root bag X, = §), so equivalently we can bound the total number of nodes
constructed by the algorithm. This is precisely the point when we will use
property (Eb of the set S computed in each call. Let T be the final tree decom-
position of G' output by the algorithm. For each call decompose(W,S), we
have that set §, which is the bag at the root of the returned decomposition
Tw.s, contains at least one vertex u that does not belong to S. Consequently,
the root of 7Ty ¢ is the unique top-most node of 7 whose bag contains u.
Since for every call decompose(W, S) we can find such a vertex u, and these
vertices are pairwise different, we infer that the total number of constructed
nodes does not exceed the total number of vertices in the graph, which is n.
Therefore, procedure decompose(W, S) is called at most n times, and the
whole algorithm runs in time O(8¥k? - n?). O

The algorithm of Theorem [7.1§] can give a negative answer only in two
cases: if it finds out that m > kn, or when it identifies a set S of size 3k + 4
which does not satisfy the statement of Lemma[7.21]in graph G[W], and con-
sequently also in graph G. Distinguishing the case when m > kn was needed
only for the purpose of achieving better running time; if we drop this case,
then the algorithm is still correct, but works in O(8%k - nm) time. Hence, af-
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ter this small adjustment the algorithm of Theorem provides an obstacle
in the graph whenever it is incapable of constructing a decomposition. This
obstacle is a set S with |S| = 3k + 4 that does not satisfy the statement of
Corollary in G.

This property of a set .S is a variant of the notion of well-linkedness. The
exact definition of a well-linked set is slightly different, and the statement
of Corollary is contrived to its algorithmic usage in the proof of Theo-
rem [7.18] While in this book we use a well-linked set only in the treewidth-
approximation algorithm as a certificate for large treewidth, this notion has
found a lot of other important algorithmic applications. In the bibliographic
notes we provide pointers to literature giving a broader presentation of this
subject.

7.7 Win/win approaches and planar problems

We start from formalizing the idea of a win/win approach, already sketched
in the introduction of this chapter. Let us focus on the VERTEX COVER
problem; we would like to prove that this problem is FPT using treewidth,
ignoring for a moment the existence of a simple 2¥ - n®(") branching strategy.

Observe first that if a graph admits a vertex cover X of size k, then it
has treewidth at most k. Indeed, one can create a simple tree decomposition
(even a path decomposition) of width k, where every bag contains the whole
set X and one of the vertices outside X, and the bags are arranged into a
path arbitrarily. Given an instance (G, k) of VERTEX COVER, let us apply the
algorithm of Theoremto G and parameter k; this takes time O(8%k2.n2),
where n = |V (G)|. If the algorithm concludes that tw(G) > k, then we can
conclude that there is no vertex cover of G of size at most k. Otherwise, we
have a tree decomposition of G of width at most 4k + 4 at hand. Hence, we
can apply the dynamic-programming routine of Corollary to solve the
problem in 24¢+4k9() .y time. Thus, the total running time of the algorithm
is O(8%k? - n? + 16"k°M) . p).

This simple trick works well for VERTEX COVER, FEEDBACK VERTEX
SET, or even the more general TREEWIDTH-7 MODULATOR problem, where
for a fixed constant 7 the task is to decide whether a given graph G can be
turned into a graph of treewidth at most n by deleting at most k vertices.
Essentially, we just need two properties: that a graph in a yes-instance al-
ways has treewidth bounded in terms of k, and that the problem admits an
FPT algorithm when parameterized by treewidth. While the second property
usually holds, the first one seems very restrictive. For example, consider the
CYCLE PACKING problem: given graph G and integer k, we need to deter-
mine whether G contains at least k vertex-disjoint cycles. This problem is in
some sense dual to FEEDBACK VERTEX SET. So far we do not see any link
between the treewidth of a graph and the maximum number of cycles that
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can be packed in it. The intuition, however, is that a graph of large treewidth
has a very complicated, entangled structure that should allow us to find as
many cycles as we like.

In order to follow this direction, we need to take a closer look at combi-
natorial structures that can be always found in graphs of large treewidth.
Equivalently, we can examine obstacles that prevent the existence of tree de-
compositions of small width. So far we know two types of such structures.
The first ones are brambles that we discussed in Section [7.5] However, these
objects are quite difficult to grasp and understand, and moreover we do not
know efficient procedures for constructing brambles of large order. The sec-
ond ones are well-linked sets, or in our notation, sets S that do not satisfy
the statement of Corollary Their obvious advantage is that we get such
a set S directly from the approximation algorithm of Theorem [7.1§]in case of
its failure. While it is still unclear why the existence of this obstacle implies
the possibility of packing many cycles in the graph, there is at least some
hope that from a well-linked set one could extract a more robust obstacle
that would be easier to use.

This intuition is indeed true, and leads to a powerful result called the
Excluded Grid Theorem: graphs of large treewidth contain large grids as
minors. While the proof of this result is beyond the scope this book, we
shall state it formally and derive some algorithmic consequences using a
win/win approach. Of particular interest for us are the corollaries for planar
graphs. For this class of graphs the relation between the treewidth and grid
minors is very tight, which enables us to design many efficient approxima-
tion schemes, kernelization procedures, and, most importantly for us, fixed-
parameter tractable algorithms.

7.7.1 Grid theorems

As we have discussed in the beginning of Section treewidth is a minor-
closed parameter and hence the class G; comprising graphs of treewidth at
most ¢ is closed under taking minorsﬂ From the Graph Minors theorem it
follows that the property of having treewidth at most ¢ can be characterized
by a finite set of forbidden minors Forb(G;). That is, a graph G has treewidth
at most ¢ if and only if it does not contain any graph H € Forb(G,) as a minor.
But what do graphs of Forb(G;) look like? We apparently do not know the
answer to this question. However, we would like to get some “approximate
characterization” for graphs having treewidth at most ¢ that is more tractable.

The obvious first attempt is to look at minors of complete graphs. It
is easy to see that if a graph G contains K; as a minor, then tw(G) >
t — 1; see Exercise . However, it is the converse implication that would

5 As in this section we work with parameterized problems with parameter denoted by k,
from now on we switch to a convention of denoting the width of a tree decomposition by t.
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be more valuable to us: it would be perfect if, for some function g, the fact
that tw(G) > g(t) would imply the existence of a K; minor model in G.
This implication is unfortunately not true, as we will see in the next few
paragraphs.

Consider a large grid. More precisely, for a positive integer ¢, a t x t grid
EB; is a graph with vertex set {(z,y) : x,y € {1,...,t}}. Thus B; has exactly
t? vertices. Two different vertices (z,y) and (2’,y’) are adjacent if and only
if |z — 2’| + |y — y'| = 1. See the left graph in Fig. [7.6

It is easy to show that the treewidth of H; is at most ¢t. For example, ¢ + 1
cops can always catch the fugitive by sweeping the grid column by column.
It is harder to prove that the treewidth of B, is exactly ¢. Here Theorem [7.15]
is very handy. The cross C;; of the grid is the union of the vertices of the
i-th column and the j-th row. The set of crosses of H; forms a bramble of
order t, hence the treewidth is at least t — 1. With a bit more work, one can
construct a bramble of order ¢+ 1 in H;, and thus prove that tw(H;) = ¢; see
Exercise[7.37] On the other hand, a grid is a planar graph, so by Kuratowski’s
theorem, it does not admit a K5-minor. Therefore, K5-minor-free graphs can
be of arbitrarily large treewidth.

Our first attempt failed on the example of grids, so let us try to refine it by
taking grid minors as obstacles, instead of clique minors. Since tw(H;) = ¢,
a graph that contains a ¢ x ¢ grid as a minor must have treewidth at least
t. What is more surprising, is that now the converse implication is true:
there exists a function g such that every graph of treewidth larger than g(t)
contains a t X t grid as a minor.

This fundamental result was first proved by Robertson and Seymour. They
did not give any explicit bounds on function g, but a bound following from
their proof is astronomical. The first proof providing an explicit bound on
g was later given by Robertson, Seymour, and Thomas; they showed that
one can take g(t) = 20(t") There was a line of subsequent improvements
decreasing the polynomial function in the exponent. However, whether g can
be bounded by a polynomial function of ¢ was open for many years. This open
problem was resolved in 2013 by Chekuri and Chuzhoy in the affirmative.
More precisely, they proved the following result.

Fig. 7.6: Example of a 6 x 6 grid Hg and a triangulated grid I,
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Theorem 7.22 (Excluded grid theorem, [73]). There exists a function
g(t) = O(t*8+°W)) such that every graph of treewidth larger than g(t) contains
H; as a minor.

Theorem gives the tightest relationship known so far between the
treewidth and the size of a grid minor. It is worth remarking that its proof
is constructive: there exists a randomized polynomial-time algorithm that
either constructs a H; minor model, or finds a tree decomposition of the
input graph of width at most g(t).

Note that Theorem provides us the relationship between treewidth
and packing cycles in a graph, which we discussed in the introduction of this
section. Indeed, if a graph G contains a B; minor model for t = 2[v/k], then
in this model one can find ([vk])? > k vertex-disjoint cycles: we just need
to partition H; into 2 x 2 subgrids, and find a cycle in each of them. Hence,
whenever a graph G has treewidth larger than g(t) = O(k**+°()) then we
are certain that one can pack k vertex-disjoint cycles in G. As a result, also
for CYCLE PACKING we can apply the same win/win approach as described
before. Namely, we run the approximation algorithm for parameter g(¢). If
tw(G) > g(t), then we conclude that (G, k) is a yes-instance. Otherwise, we
obtain a tree decomposition of G of width at most 4g(¢) + 4, on which we
can employ dynamic programming (see Exercise [7.19). This shows that the
CYCLE PACKING problem is fixed-parameter tractable.

If we assume that graph G is planar, then it is possible to get a much
tighter relationship between the treewidth of G and the size of the largest
grid minor that G contains. The following theorem is due to Robertson,
Seymour and Thomas; we present here a version with refined constants due
to Gu and Tamaki.

Theorem 7.23 (Planar excluded grid theorem, [239], 403]). Let t be
a nonnegative integer. Then every planar graph G of treewidth at least 9t/2
contains B; as a minor. Furthermore, for every ¢ > 0 there exists an O(n?)
algorithm that, for a given n-vertex planar graph G and integer t, either
outputs a tree decomposition of G of width at most (9/2 + €)t, or constructs
a minor model of B; in G.

In other words, for planar graphs the function g is linear. Since H; has
2 vertices, every graph containing B, has at least t? vertices. Therefore,
Theorem immediately implies the following corollary.

Corollary 7.24. The treewidth of an n-vertex planar graph G is less than
% [\/n + 1|. Moreover, for any € > 0, a tree decomposition of G of width at
most (3 +¢) [vn+1| can be constructed in O(n?) time.

For us it is more important that the planar excluded grid theorem allow us
to identify many parameterized problems on planar graphs with parameter
k, such that the treewidth of the graph in every yes-instance/no-instance
is O(\/E) For example, a quick reader probably can already see that this
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will be the case for the CYCLE PACKING problem. This requires inspecting
the general win/win strategy for this problem that we explained before, and
replacing function g provided by Theorem [7.22] with the one provided by
Theorem We shall delve deeper into this direction in Section but
now we proceed to one more variant of the excluded grid theorem.

The variant we are about to introduce considers edge contractions instead
of minors. For this, we shall define a new family of graphs which play the role
of grids. For an integer ¢ > 0, the graph I} is obtained from the grid B; by
adding, for all 1 < z,y <t—1, the edge (z+1,y), (z,y+ 1), and additionally
making vertex (¢,t) adjacent to all the other vertices (z,y) with « € {1,t} or
y € {1,t}, i.e., to the whole border of H;. Graph I} is the graph in the right

panel of Fig.

Theorem 7.25 (Planar excluded grid theorem for edge contrac-
tions). For every connected planar graph G and integer t > 0, if tw(G) >
9t+5 then G contains Iy as a contraction. Furthermore, for every e > 0 there
exists an O(n?) algorithm that, given a connected planar n-vertex graph G
and integer t, either outputs a tree decomposition of G of width (9+ )t +5
or a set of edges whose contraction in G results in Iy.

Proof (sketch). By Theorem if the treewidth of G is at least 9t + 5,
then G contains Hs;y1 as a minor. This implies that, after a sequence of
vertex deletions, edge deletions and edge contractions, G can be transformed
to Hoi41. Let us examine this sequence, omit all edge deletions, and replace
every deletion of some vertex v with an edge contraction between v and one
of its neighbors (such a neighbor exists by the connectivity of G). It is easy to
see that this sequence of edge contractions transforms G into graph H which
is a partially triangulated (2¢ + 1) x (2¢t + 1) grid, that is, a planar graph
obtained from grid By, by adding some edges. We construct I from H
by contracting edges as shown in Fig. [7.7] More precisely, we first contract
the whole border of the grid so that it becomes one vertex adjacent to the
whole border of the inner (2t — 1) x (2t — 1) subgrid. Then we contract this
vertex onto the corner of the subgrid. At the end, we contract edges in the
subgrid using the zig-zag pattern depicted in Fig. [7.7] to obtain the same
diagonal in every cell. The final observation is that we must have obtained
exactly the graph I'; with no extra edges, since adding any edge to I} spoils
its planarity—recall that we started from a planar graph G and applied only
edge contractions. O

7.7.2 Bidimensionality

Introduction to bidimensionality. The planar excluded grid theorem
(Theorem [7.23)) provides a powerful tool for designing algorithms on planar
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Fig. 7.7: The steps of the proof of Theorem The two first steps are the
boundary contraction of a partial triangulation of Hg. The third step is the
contraction to Iy

graphs. In all these algorithms we use again the win/win approach. We first
approximate the treewidth of a given planar graph. If the treewidth turns
out to be small, we use dynamic programing to find a solution. Otherwise,
we know that our graph contains a large grid as a minor, and using this we
should be able to conclude the right answer to the instance.

Let us first give a few examples of this strategy. In all these examples, by
making use of the planar excluded grid theorem we obtain algorithms with
running time subexponential in the parameter.

Let us first look at PLANAR VERTEX COVER, i.e., for a given planar graph
G and parameter k, we need to determine whether there exists a vertex cover
of G of size at most k. We need to answer the following three simple questions.

(i) How small can be a vertex cover of H,;? It is easy to check that H
contains a matching of size [t?/2], and hence every vertex cover of B,
is of cardinality at least |t2/2].

(ii) Given a tree decomposition of width ¢ of G, how fast can we solve
VERTEX COVER? By Corollary this can be done in time 2¢-t9(M) .,

(iii) Is VERTEX COVER minor-closed? In other words, is it true that for
every minor H of graph G, the vertex cover of H does not exceed the
vertex cover of G7

As was observed in Chapter [6.3] if the class of graphs with vertex cover
at most k is minor-closed, i.e., a graph G has a vertex cover of size at most
k, then the same holds for every minor of G. Thus, if G contains H; as a
minor for some ¢ > +/2k + 2, then by (i) G has no vertex cover of size k. By
the planar excluded grid theorem, this means that the treewidth of a planar
graph admitting a vertex cover of size k is smaller than %\/ 2k + 2.

We summarize the above discussion with the following algorithm. For
t = [v2k+ 2] and some £ > 0, by making use of the constructive part
of Theorem we either compute in time O(n?) a tree decomposition of G
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of width at most (§ + ¢)t, or we conclude that G has B, as a minor. In the
second case, we infer that G has no vertex cover of size at most k. However,
if a tree decomposition has been constructed, then by we can solve the
problem in time 2(3+e)[V2E+2] . O .y — 920(VK) .y The total running time
of the algorithm is hence 20VF) . n 4 O(n?).

It is instructive to extract the properties of PLANAR VERTEX COVER
which were essential for obtaining a subexponential parameterized algorithm.

(P1) The size of any solution in B is of order 2(t?).

(P2) Given a tree decomposition of width ¢, the problem can be solved
in time 20®) . pOM),

(P3) The problem is minor-monotone, i.e., if G' has a solution of size
at most k, then every minor of G also has a solution of size at most

k.

In this argument we have used the fact that in H; the size of a mini-
mum solution is lower-bounded by a quadratic function of t. We could apply
the same strategy for maximization problems where H; admits a solution
of quadratic size. For instance, consider the PLANAR LONGEST PATH and
PLANAR LONGEST CYCLE problems: given a planar graph G and integer k,
we are asked to determine whether G contains a path/cycle on at least k
vertices. It is easy to see that H; contains a path on ¢? vertices and a cycle
on t? — 1 vertices (or even t2, if ¢ is even). Moreover, both these problems are
minor-monotone in the following sense: if a graph H contains a path/cycle
on at least k vertices, then so does every graph containing H as a minor.
Finally, both these problems can be solved in time t©® . n®M) when a tree
decomposition of width ¢ is available; see Exercise Consequently, we
can apply the same win/win approach to obtain 20(Vk1esk) . 0 time al-
gorithms for PLANAR LONGEST PATH and PLANAR LONGEST CYCLE — the
only difference is that when a large grid minor is found, we give a positive
answer instead of negative.

This suggests that properties (P1), (P2), and (P3) may constitute a base
for a more general meta-result, which would apply to other problems as well.
But before we formalize this idea, let us consider a few more examples.

Our next problem is PLANAR DOMINATING SET. It is easy to check that
the problem satisfies (P1), and we also proved that it satisfies (P2) (see The-
orem [7.7). However, (P3) does not hold. For example, to dominate vertices
of a 3/-vertex cycle C we need /¢ vertices. But if we add to C a universal
vertex adjacent to all the vertices of C, then the new graph contains C as
a minor, but has a dominating set of size 1. Therefore, the approach that
worked for PLANAR VERTEX COVER cannot be applied directly to PLANAR
DOMINATING SET.

However, while not being closed under taking of minors, domination is
closed under edge contractions. That is, if G can be dominated by k vertices,
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then any graph obtained from G by contracting some of the edges can be
also dominated by k vertices. What we need here is a structure similar to a
grid to which every planar graph of large treewidth can be contracted. But
this is exactly what Theorem [7.25] provides us!

We thus need to answer the following question: what is the minimum
possible size of a dominating set in I';? We do not know the exact formula (and
this can be a difficult question to answer), but obtaining an asymptotic lower
bound is easy. Every vertex except the lower-right corner (¢,¢) can dominate
at most nine vertices. The lower-right corner vertex dominates only 4t — 4
vertices. Thus, every dominating set of I} is of size at least % = 0(t?).

In this manner, using Theorem [7.25] we conclude that every connected
planar graph with dominating set of size at most k& has treewidth O(V/k).
We can now combine this observation with the dynamic programming of
Theorem Using the same win/win approach, this gives us a 20(Vk) .
n®W_time algorithm for PLANAR DOMINATING SET. And again, the essential
properties that we used are: (P1’) the size of a minimum solution in I3 is of
order £2(t?); (P2’) the problem can be solved in single-exponential time when
parameterized by the treewidth of the input graph; and (P3’) the problem is
closed under edge contraction (that is, the solution does not increase when
edges are contracted).

Formalizing the framework. We have already gathered enough intuition
to be able to put the framework into more formal terms. In the following, we
restrict our attention to vertex-subset problems. Edge-subset problems can
be defined similarly and same arguments will work for them, hence we do not
discuss them here.

Let ¢ be a computable function which takes on input a graph G and a
set S C V(G), and outputs true or false. The interpretation of ¢ is that it
defines the space of feasible solutions S for a graph G, by returning a Boolean
value denoting whether S is feasible or not. For example, for the DOMINATING
SET problem we would have that ¢(G, S) = true if and only if N[S] = V(G).
Similarly, for INDEPENDENT SET we would have that ¢(G, S) = true if and
only if no two vertices of S are adjacent.

For a function ¢, we define two parameterized problems, called vertez-
subset problems: ¢-MINIMIZATION and ¢-MAXIMIZATION. In both
problems the input consists of a graph G and a parameter k. ¢-
MINIMIZATION asks whether there exists a set S C V(G) such that
|S| < k and ¢(G, S) = true. Similarly, $-MAXIMIZATION asks whether
there exists a set S C V(G) such that |S| > k and ¢(G, S) = true.

Obviously, problems like DOMINATING SET, INDEPENDENT SET, or VER-
TEX COVER are vertex-subset problems for appropriate functions ¢. We note,
however, that this notion captures also many other problems that, at first
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glance, have only little resemblance to the definition. A good example here is
the familiar CYCLE PACKING problem. To see how CYCLE PACKING can be
understood as a maximization vertex-subset problem, observe that a graph
G contains k vertex-disjoint cycles if and only if there exists a set S C V(G)
of size at least k with the following property: one can find in G a family
of vertex-disjoint cycles such that each vertex of S is contained in exactly
one of them. Hence, we can set ¢(G, S) to be true if and only if exactly this
property is satisfied for G and S. Contrary to the examples of DOMINATING
SET and INDEPENDENT SET, in this case it is NP-hard to check whether
(G, S) is true for a given graph G and set S. But since we require ¢ only to
be computable, this definition shows that CYCLE PACKING is a vertex-subset
problem. Another examples are LONGEST PATH and LONGEST CYCLE; recall
that in these problems we ask for the existence of a path/cycle on at least k
vertices in a given graph. Here, we can take ¢(G, S) to be true if and only if
G|S] contains a Hamiltonian path/cycle.

Let us consider some ¢- MINIMIZATION problem Q. Observe that (G, k) € Q
implies that (G, k') € Q for all ¥’ > k. Similarly, if @ is a ¢-MAXIMIZATION
problem, then we have that (G, k) € @ implies that (G, k") € Q for all &' < k.
Thus, the notion of optimality is well defined for vertex-subset problems.

Definition 7.26. For a ¢-MINIMIZATION problem @, we define
OPTg(G) =min{k : (G,k) € Q}.

If there is no k such that (G, k) € @, then we put OPT,(G) = +o0.
For a ¢-MAXIMIZATION problem @, we define

OPTg(G) =max{k : (G,k) € Q}.
If there is no k such that (G, k) € @, then we put OPT(G) = —oo.

We say that a (minimization or maximization) vertex-subset problem @
is contraction-closed if for every H that is a contraction of some graph G,
we have that OPT(H) < OPTg(G). Similarly, a vertex-subset problem @
is minor-closed if the same inequality holds for all minors H of G. Observe
that the property of being contraction-closed or minor-closed can be checked
by examining single graph operations for these containment notions: a con-
traction of a single edge in the case of contractions, and vertex deletion, edge
deletion, and edge contraction in the case of minors.

We are now ready to define bidimensional problems.

Definition 7.27 (Bidimensional problem). A vertex-subset problem Q
is bidimensional if it is contraction-closed, and there exists a constant ¢ > 0
such that OPTq(I}) > ct? for every ¢ > 0.

As already pointed out in Definition for the sake of simplicity from
now on we will focus only on contraction bidimensionality. That is, we will
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work with contraction-closed problems and graphs [}, rather than with
minor-closed problems and grids H;. Being contraction-closed is a strictly
weaker requirement than being minor-closed, whereas graphs I'; and H; do
not differ that much when it comes to arguing about lower/upper bounds
on the optimum value for them. For this reason, on planar graphs working
with contraction bidimensionality is usually the preferable way. We remark
here that differences between contraction bidimensionality and minor bidi-
mensionality become more significant when one generalizes the theory to
H-minor-free graphs. We briefly discuss this topic at the end of this section.

It is usually straightforward to determine whether a given problem @
is bidimensional according to Definition For example, let us take
@ =VERTEX COVER. Contracting an edge does not increase the size of a
minimum vertex cover, so the problem is contraction-closed. And as we al-
ready observed, OPTg(8;) > |t?/2]. Thus also OPTo(I}) > [t?/2], so
VERTEX COVER is bidimensional. Similarly, FEEDBACK VERTEX SET, IN-
DUCED MATCHING, CYCLE PACKING, SCATTERED SET for a fixed value of
d, LONGEST PATH, DOMINATING SET, and r-CENTER are bidimensional as
well; see Exercise [7.40

The crucial property that we used in our examples was that whenever the
answer to the problem cannot be determined immediately, the input graph
has treewidth roughly v/k. This is exactly what makes bidimensionality useful
for algorithmic applications.

Lemma 7.28 (Parameter-treewidth bound). Let Q be a bidimensional
problem. Then there exists a constant g such that for any connected planar
graph G it holds that tw(G) < aq - /OPTo(G). Furthermore, there ezists a
polynomial-time algorithm that for a given G constructs a tree decomposition

of G of width at most ag - \/OPTg(G).

Proof. Consider a bidimensional problem @ and a connected planar graph
G. Let t be the maximum integer such that G contains [} as a contraction.
Since @ is bidimensional, it is also contraction-closed, and hence OPT,(G) >
OPTq(I}) > ct?. By Theorem the treewidth of G is at most 9t+5 < 14¢.

Thus OPTG(G) > c¢- twl(g)Z) and the first statement of the lemma follows
for ag = 14/+/c. To obtain the second, constructive statement, one can
take ag = 15/+/c and apply the algorithm of Theorem for e = 1 and
increasing values of parameter ¢ (starting from 1), up to the point when a

tree decomposition is returned. a

The next theorem follows almost directly from Lemma [7.28

Theorem 7.29. Let QQ be a bidimensional problem such that QQ can be solved
in time 2°) . nOW) when a tree decomposition of the input graph G of width
t is provided. Then Q is solvable in time 20(VR) . nOW) on connected planar
graphs.



7.7 Win/win approaches and planar problems 209

Proof. The proof of the theorem is identical to the algorithms we described for
VERTEX COVER and DOMINATING SET. Let (G, k) be an input instance of Q.
Using Lemma [7.28] we construct in polynomial time a tree decomposition G
of width t < ag-/OPTg(G). If t > agVk, then we infer that k < OPTg(G).
In such a situation we can immediately conclude that (G, k) is a no-instance
of @, provided @ is a minimization problem, or a yes-instance of @, if @ is a
maximization problem. Otherwise, we have in hand a tree decomposition of G
of width at most aQ\/E, and we can solve the problem in time 20(VE) . n0)
using the assumed treewidth-based algorithm. ad

Observe that if the assumed algorithm working on a tree decomposition
had a slightly different running time, say t©® . n®1) then we would need
to make a respective adjustment in the running time of the algorithm given
by Theorem In the aforementioned case we would obtain an algorithm
with running time KOWE) . po)

Let us remark that the requirement of connectivity of G in Theorem [7.29]
is necessary. In Exercise [7.42] we give an example of a bidimensional problem
@ such that Lemma [7.28] does not hold for @ and disconnected graphs. On
the other hand, for most natural problems, in particular problems listed in
Corollaries and we do not need the input graph G to be connected.
This is due to the fact that each of these problems is monotone under removal
of connected components. In other words, for every connected component C'
of G we have that OPTo(G — C) < OPTg(G). It is easy to see that if
problem @ has this property, then the requirement of connectivity can be
lifted in Lemma [7.28] and Theorem [7.29

We can now combine the facts that many considered problems are both
bidimensional and solvable in single-exponential time when parameterized by
treewidth, see Theorem [7.9) and Exercises [7.40] and [7.23] Thus, we obtain the
following corollary of Theorem [7.29

Corollary 7.30. The following parameterized problems can be solved in time
20(VE) pO(1) 4 planar graphs:

VERTEX COVER,
INDEPENDENT SET,
DOMINATING SET,
SCATTERED SET for fized d,
INDUCED MATCHING, and
r-CENTER for fized r.

Similarly, by combining Lemma with Theorem we obtain the
following corollary.

Corollary 7.31. The following parameterized problems can be solved in time
(ORI RO op planar graphs:

e FEEDBACK VERTEX SET,
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LONGEST PATH and LONGEST CYCLE,
CYCLE PACKING,

CONNECTED VERTEX COVER,
CONNECTED DOMINATING SET, and
CONNECTED FEEDBACK VERTEX SET.

In Chapter 1T we will see how to improve the running time of dynamic pro-
gramming on a tree decomposition to 2°*) .n®M for almost all the problems
listed in Corollary [7.31] except CYCLE PACKING. Hence, for these problems
the running time on planar graphs can be improved to QO(ﬁ)nO(l), as stated
in Corollary Actually, this can be done also for CYCLE PACKING, even
though in Chapter [14] we will learn that the running time of t©®) . n©(1) on
general graphs cannot be improved under reasonable complexity assumptions
(see Theorem [14.19). We can namely use the fact that the algorithm is run
on a planar graph of treewidth at most ¢, and this property can be exploited
algorithmically via the technique of Catalan structures. This improvement,
however, is beyond the scope of this book.

Beyond planarity. Let us briefly mention possible extensions of bidimen-
sionality to more general classes of graphs. The planar excluded grid theorem
(Theorem can be generalized to graphs excluding some fixed graph H as
a minor, i.e., H-minor-free graphs. More precisely, Demaine and Hajiaghayi
[134] proved that for every fixed graph H and integer ¢ > 0, every H-minor-
free graph G of treewidth more than ayt contains H; as a minor, where oy
is a constant depending on H only.

Using this, it is possible to show that the treewidth-parameter bound
tw(G) < ag-+/OPTo(G) holds for much more general classes of apex-minor-
free graphs. An apex graph is a graph obtained from a planar graph G by
adding one vertex and making it adjacent to an arbitrary subset of vertices
of G. Then a class of graphs is apex-minor-free if every graph in this class
does not contain some fixed apex graph as a minor. Thus for example, the
bidimensional arguments imply a subexponential parameterized algorithm
for DOMINATING SET on apex-minor-free graphs, but do not imply such
an algorithm for general H-minor-free graphs. While DOMINATING SET is
solvable in subexponential parameterized time on H-minor-free graphs, the
algorithm requires additional ideas.

If we relax the notion of (contraction) bidimensionality to minor bidimen-
sionality, i.e., we require that the problem @ is minor-closed and OPTg(B;) =
2(t?), then for minor-bidimensional problems the treewidth-parameter bound
holds even for H-minor-free graphs. Therefore for example VERTEX COVER
or FEEDBACK VERTEX SET admit subexponential parameterized algorithms
on graphs excluding a fixed minor because they are minor-bidimensional.
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7.7.3 Shifting technique

We now present another technique for obtaining fixed-parameter tractable al-
gorithms for problems on planar graphs using treewidth. The main idea of the
approach originates in the work on approximation schemes on planar graphs,
pioneered in the 1980s by Baker. The methodology is widely used in mod-
ern approximation algorithms, and is called the shifting technique, or simply
Baker’s technique. In this section we present a parameterized counterpart of
this framework.

For a vertex v of a graph G and integer r > 0, by G7, we denote the
subgraph of G induced by vertices within distance at most r from v in G. By
Theorem [7.25] we have the following corollary.

Corollary 7.32. Let G be a planar graph, v be an arbitrary vertezx, and r be
a nonnegative integer. Then tw(G7) < 18r + 13.

Proof. For the sake of contradiction, suppose that tw(G]) > 18r + 14. Since
G, is connected and planar, by Theorem we infer that G, can be con-
tracted to I,41. It is easy to see that for any vertex of I, 1, in particular
for the vertex to which v was contracted, there is another vertex of I%,41 at
distance at least r + 1 from this vertex. Since contraction of edges does not
increase the distances between vertices, this implies that there is a vertex of
G’ at distance at least  + 1 from v, which is a contradiction. O

It is possible to prove a better bound on the dependence of treewidth on r
in planar graphs than the one stated in Corollary The following result
is due to Robertson and Seymour.

Theorem 7.33 ([398]). Let G be a planar graph, v be an arbitrary vertez,
and r be a nonnegative integer. Then tw(G?) < 3r + 1. Moreover, a tree
decomposition of G, of width at most 3r+1 can be constructed in polynomial
time.

By Theorem we have the following corollary.

Corollary 7.34. Let v be a vertex of a planar graph G, and for i > 0 let L;
be the set of vertices of G that are at distance exactly © from v. Then for any
i, > 1, the treewidth of the subgraph G, ;1;—1 = G[L; ULj31U-- ULy 1]
does not exceed 3j + 1. Moreover, a tree decomposition of G yj—1 of width
at most 35 + 1 can be computed in polynomial time.

Proof. Consider the graph G:t7=! and note that Gi~! is its induced sub-
graph that is connected. Contract the whole subgraph Gi~! to one vertex
v*, and observe that the obtained planar graph H is exactly G;;4,;-1 with
additional vertex v*. However, in H all the vertices are at distance at most j
from v*, since in G every vertex from L;UL;41U---UL;y;_; is at distance at
most j from some vertex of L; . By Theorem [7.33] we can compute in poly-
nomial time a tree decomposition of H of width at most 35 + 1. As G; ;41
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is an induced subgraph of H, we can easily adjust it to a tree decomposition
of G; i1 of width at most 35 + 1. -

The basic idea behind the shifting technique is as follows.

e Pick a vertex v of the input planar graph G, and run a breadth-first
search (BFS) from v in G.

e By Corollary [7.34] for any choice of 4,5 > 1, the treewidth of the
subgraph G; ;11 induced by vertices on levels 7,7+ 1,...,i+j—1
of BFS does not exceed 35 + 1.

e Assume that in our problem we are looking for a set S of size k
that has some property. Suppose for a moment that such S exists.
If we take 7 = k + 1, then we are sure that there exists a number
q € {0,1,...,k} such that levels with indices of the form a(k+1)+¢q
for a = 0,1,2,... do not contain any vertex of S. We can remove
these layers from G, thus obtaining a graph G, that is a disjoint
union of graphs G(x41)atq+1,(k+1)(a+1)+q—1 for a = 0,1,2,..., plus
possibly G471 if ¢ > 0. Note that G, still contains the whole set S.
However, using Theorem [7.33| and Corollary [7.34] we can construct a
tree decomposition of G, of width at most 3k + 1.

e To find a solution S, we iterate through all possible ¢ € {0,1,...,k},
and for each ¢ we run a dynamic-programming algorithm on the
obtained tree decomposition of G,. If a solution exists, it survives in
at least one graph G, and can be uncovered by the algorithm.

We formalize the above idea in the following lemma.

Lemma 7.35. Let G be a planar graph and let k > 0 be an integer. Then the
vertex set of G can be partitioned into k + 1 sets (possibly empty) in such a
manner that any k of these sets induce a graph of treewidth at most 3k + 1
in G. Moreover, such a partition, together with tree decompositions of width
at most 3k + 1 of respective graphs, can be found in polynomial time.

Proof. Let us give a proof first for the case of connected graphs. Assume then
that we are given a connected planar graph G and a nonnegative integer k.
We select an arbitrary vertex v € V(G) and run a breadth-first search (BFS)
from v. For j € {0,...,k}, we define S; to be the set of vertices contained
on levels a(k + 1) + j of the BFS, for a = 0,1,2,.... Observe that thus
(S;)o<j<k is a partition of V(G). Moreover, the graph G — S; is a disjoint
union of graphs G'(i41)atj+1,(k+1)(a+1)+j—1 for a = 0,1,2,...; plus possibly
GI~! provided that j > 0. By Theorem and Corollary for each of
these graphs we can construct a tree decomposition of width at most 3k + 1;
connecting these tree decompositions arbitrarily yields a tree decomposition
of G — S; of width at most 3k + 1. Hence, partition (S;)o<;<k satisfies the
required property and we have proved lemma for connected graphs.
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Let G be a (non-connected) graph and let G, Gs, ..., G. be its connected
components . Then we apply the statement to each connected component G;
separately, thus obtaining a partition (S;»)ogjgk of V(G;) that satisfies the
required property. Then for j € {0,1,...,k} take S; = J;_, SJZ It is easy to
verify that partition (S;)o<j<i of V(G) satisfies the required property. O

Sometimes it is more convenient to use the following edge variant of
Lemma[7.35] The proof of the following statement can be proved in a similar
manner as Lemma and we leave it as Exercise [7.47]

Lemma 7.36. Let G be a planar graph and k be a nonnegative integer. Then
the edge set of G can be partitioned into k+ 1 sets (possibly empty) such that
any k of these sets induce a graph of treewidth at most 3k+4 in G. Moreover,
such a partition, together with tree decompositions of width at most 3k +4 of
respective graphs, can be found in polynomial time.

We now give two examples of applications of the shifting technique. Our
first example is SUBGRAPH ISOMORPHISM. In this problem we are given two
graphs, host graph G and pattern graph H, and we ask whether H is iso-
morphic to a subgraph of G. Since CLIQUE is a special case of SUBGRAPH
ISOMORPHISM, the problem is W/1]-hard on general graphs when parame-
terized by the size of the pattern graph. It is possible to show using color
coding that the problem can be solved in time f(|V (H)|)|V(G)|®® ) for
some function f, see Exercise In other words, the problem is FPT if the
pattern graph has constant treewidth. However, we now prove that if both
the host and the pattern graph are planar, then the problem is FPT when
parameterized by |V (H)|, without any further requirements.

As a building block here we need the following result about solving SUB-
GRAPH [SOMORPHISM on graphs of bounded treewidth. The lemma can be
proved by either designing an explicit dynamic-programming algorithm, or
using Courcelle’s theorem. We leave its proof as Exercise

Lemma 7.37. There exists an algorithm that solves a given instance (G, H)
of SUBGRAPH ISOMORPHISM in time f(|V(H)|,t) - |[V(G)|°V), where f is
some function and t is the width of a given tree decomposition of G.

Let us remark that the running time of the algorithm has to depend on
|V (H)|; in other words, parameterization just by the treewidth will not work.
It is in fact known that SUBGRAPH ISOMORPHISM is NP-hard on forests, i.e.,
graphs of treewidth 1. In bibliographic notes we discuss further literature on
different parameterizations of SUBGRAPH ISOMORPHISM.

Let us note that if we search for a connected subgraph H, then Lem-
mas and are sufficient to find a solution: for each vertex v of a pla-
nar graph, we try if a subgraph induced by the vertices of the ball of radius
|V (H)| centered in v contains H as a subgraph. Because each such subgraph
is of treewidth at most 3|V (H)|+1, this will give a time f(|V (H)|)-|V(G)|®M
algorithm solving SUBGRAPH ISOMORPHISM. However, if H is not connected,
we need to use shifting technique.
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Theorem 7.38. There exists an algorithm that, given an instance (G, H) of
SUBGRAPH ISOMORPHISM where G and H are planar, solves this instance in
time f(|[V(H)|) - |[V(G)|°WM), for some function f.

Proof. Let k = |V(H)|. Using Lemmal[7.35] we construct in polynomial time a
partition SoU- - -USy of V(G) such that for every i € {0,...,k}, graph G—S;
has a tree decomposition of width at most 3k + 1. These tree decompositions
are also provided by the algorithm of Lemma [7.35]

By Lemmal7.37] we can solve SUBGRAPH ISOMORPHISM in time f(k)-n®®)
on each G — S;. Because we partition the vertex set of G into £ 4 1 sets, for
every k-vertex subset X of G there exists j € {0,...,k} such that XNS; = 0.
Therefore, if G contains H as a subgraph, then for at least one value of j,
G — S; also contains H as a subgraph. This means that by trying each of the
graphs G — S; for j € {0,...,k}, we will find a copy of H in G, provided
there exists one. O

The running time of the algorithm of Theorem depends on how fast
we can solve SUBGRAPH ISOMORPHISM on graphs of bounded treewidth. In
bibliographic notes we sketch the current state of the art on this issue.

Our second example concerns the MINIMUM BISECTION problem. For a
given n-vertex graph G and integer k, the task is to decide whether there
exists a partition of V(G) into sets A and B, such that [n/2] < |A]|,|B| <
[n/2] and the number of edges with one endpoint in A and the second in B
is at most k. In other words, we are looking for a balanced partition (A, B)
with an (A, B)-cut of size at most k. Such a partition (A, B) will be called a
k-bisection of G.

It will be convenient to work with a slightly more general variant of the
problem. In the following, we will assume that G can be a multigraph, i.e., it
can have multiple edges between the same pair of vertices. Moreover, the
graph comes together with a weight function w : V(G) — Z>¢ on ver-
tices, and from a k-bisection (A, B) we will require that |w(V(G))/2] <
w(A),w(B) < [w(V(G))/2]. Of course, by putting unit weights we arrive at
the original problem.

The goal is to prove that MINIMUM BISECTION on planar graphs is FPT
when parameterized by k. This time we shall use yet another variant of
Lemma [7.35] The proof of the following result is slightly more difficult than
that of Lemmal[Z.35 or Lemmal[7.36] We leave it to the reader as Exercise [Z.501

Lemma 7.39. Let G be a planar graph and k be a nonnegative integer. Then
the edge set of G can be partitioned into k+ 1 sets such that after contracting
edges of any of these sets, the resulting graph admits a tree decomposition
of width at most ck, for some constant ¢ > 0. Moreover, such a partition,
together with tree decompositions of width at most ck of respective graphs,
can be found in polynomial time.
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As a building block for FPT algorithm on planar graphs, we need the
following lemma about fixed parameterized tractability of MINIMUM BISEC-
TION on graphs of bounded treewidth. Its proof is again left to the reader as

Exercise [T.511

Lemma 7.40. MINIMUM BISECTION can be solved in time 2t - W - n©®) on
an n-vertex multigraph given together with its tree decomposition of width t.
Here, W is the maxzimum weight of a vertex.

Note that here we are referring to tree decompositions of multigraphs,
but the definitions of treewidth and tree decompositions can be naturally
extended to multigraphs as well. We now proceed to the main result; note
that again we state it for the generalized weighted problem.

Theorem 7.41. MINIMUM BISECTION on planar graphs can be solved in
time 2°0) . W . nOW) where W is the mazimum weight of a vertex.

Proof. We use Lemma to partition the set of edges of the input planar
graph G into sets Sy U- - -USk. Note here that Lemma [7.39is formally stated
only for simple graphs, but we may extend it to multigraphs by putting copies
of the same edge always inside the same set 5.

Suppose that there exists a k-bisection (A4, B) of G, and let F' be the set of
edges between A and B. Then at least one of the sets S; is disjoint from F'. Let
us contract all the edges of S, keeping multiple edges but removing created
loops. Moreover, whenever we contract some edge uv, we define the weight of
the resulting vertex as w(u)+w(v). Let G; be the obtained multigraph. Since
F'is disjoint from S;, during this contraction we could have just contracted
some parts of G[A] and some parts of G[B]. Therefore, the new multigraph G
also admits a k-bisection (A’, B"), where A’, B’ comprise vertices originating
in subsets of A and B, respectively.

On the other hand, if for any G; we find some k-bisection (A’, B'), then
uncontracting the edges of S; yields a k-bisection (A, B) of G. These two
observations show that G admits a k-bisection if and only if at least one of the
multigraphs G does. However, Lemma|7.39|provided us a tree decomposition
of each G; of width O(k). Hence, we can apply the algorithm of Lemma|7.40
to each G, and thus solve the input instance (G, k) in time 20(k) .y . n O,
Note here that the maximum weight of a vertex in each G is at most nIV.

O

Let us remark that the only properties of planar graphs that we used here
were Theorem [7.33] and the fact that planar graphs are closed under the
operation of taking minors. We say that a class of graphs G is of bounded
local treewidth if there exists function f such that for every graph G € G and
every vertex v of G, it holds that tw(G”) < f(r). For example, Theorem
shows that planar graphs are of bounded local treewidth. Graphs of maximum
degree d for a constant d are also of bounded local treewidth for the following
reason: for every v and r, graph G}, contains at most d” + 1 vertices, so also
tw(Gr) < d". However, this class is not closed under taking minors.
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Our arguments used for planar graphs can be trivially extended to minor-
closed graph classes of bounded local treewidth. It was shown by Eppstein
[165] that a minor-closed class of graphs is of bounded local treewidth if and
only if all its members exclude some fixed apex graph as a minor. Recall
that an apex graph is a graph obtained from a planar graph G by adding one
vertex and making it adjacent to an arbitrary subset of vertices of G. Then a
class of graphs is apex-minor-free if every graph in this class does not contain
some fixed apex graph as a minor. Demaine and Hajiaghayi [134] refined
the result of Eppstein by showing that for every apex-minor-free graph class,
function f in the definition of bounded local treewidth is actually linear.

*7.8 Irrelevant vertex technique

In the PLANAR VERTEX DELETION problem we are given a graph G and
an integer k. The question is whether there exists a vertex subset D of size
at most k such that G — D is planar. A set D with this property will be
henceforth called a planar deletion set.

The class of planar graph is minor-closed and due to that PLANAR VER-
TEX DELETION is a special case of G VERTEX DELETION for G the class of
planar graphs. By Theorem [6.17, we have that PLANAR VERTEX DELETION
is nonuniformly FPT. In this section we give a constructive FPT algorithm
for PLANAR VERTEX DELETION. However, more interesting than the algo-
rithm itself is the method of obtaining it. The algorithm is namely based on
the irrelevant vertex technique.

This technique originates from the work of Robertson and Seymour on
their famous FPT algorithm for the VERTEX DISJOINT PATHS problem. In
this problem, we are given a graph G and a set of k pairs of terminal vertices,
{(s1,t1),.-.,(sk, tx)}, and the task is to find k vertex-disjoint paths connect-
ing all pairs of terminals. The algorithm of Robertson and Seymour is very
complicated and uses deep structural theorems from the theory of Graph Mi-
nors. On a very general level, the algorithm can be roughly summarized as
follows.

As long as the treewidth of G is large in terms of k, it is possible to find a
vertex v that is solution-irrelevant: every collection of k£ paths of any solution
can be rerouted to an equivalent one that avoids v. Thus v can be safely
removed from the graph without changing the answer to the instance. By
repeating this argument exhaustively, we eventually reduce the treewidth of
the graph to some function of k. Then the problem can be solved in FPT
time using dynamic programming.

Since the work of Robertson and Seymour, the irrelevant vertex technique
has been used multiple times in various parameterized algorithms. While the
general win/win approach is natural, the devil lies in the detail. Most of
the algorithms based on irrelevant edge/vertex techniques are very nontrivial
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and involve a large number of technical details. The algorithm for PLANAR
VERTEX DELETION is one of the simplest examples of applications of this
approach, as it is possible to give an almost complete proof in just a few
pages. Formally, we shall prove the following theorem.

Theorem 7.42. PLANAR VERTEX DELETION can be solved in time
90 (k*log k), O(1)

The remaining part of this section is devoted to the proof of the theorem.
We shall implement the following plan.

e We use iterative compression (see Chapter [4)) in a standard manner
and reduce the problem to DISJOINT PLANAR VERTEX DELETION:
For a given graph G and vertex set D of size k + 1 such that G — D
is planar, we ask if there is a set D’ of size k such that G — D’ is
planar and D N D’ = (.

e The only black box ingredient which we do not explain is the fact that
on graphs of treewidth ¢ one can solve DISJOINT PLANAR VERTEX
DELETION in time 29(*1°89)y, using dynamic programming.

e If the treewidth of G—D is smaller than some threshold depending on
k, then we solve DISJOINT PLANAR VERTEX DELETION by dynamic
programming. Otherwise, G — D contains a large grid as a minor.

o If the grid is sufficiently large, then it contains k + 2 “concentric”
cycles “centered” at some vertex v. Moreover, the outermost cycle
C separates all the other cycles from the rest of the graph, and the
connected component of G — C' containing all these cycles is planar.
Then one can show that v is irrelevant and can be safely deleted from
the graph; this is the most difficult part of the proof.

We start by introducing a criterion of planarity that will be used later. Let
C be a simple cycle in graph G. A C-bridge in G is a subgraph of G which
is either a single edge that is a chord of C' (together with its endpoints), or
a connected component of G — V(C') together with all the edges connecting
it with C' (and their endpoints). Observe that if G is not connected, then
by definition every connected component of G that does not contain C is
a C-bridge. If B is a C-bridge, then the vertices of V(C) N V(B) are the
attachment points of B. Two C-bridges Bi, By overlap if at least one of the
following conditions is satisfied:

(a) Bjp and By have at least three attachment points in common, or

(b) cycle C contains distinct vertices a, b, ¢, d (in this cyclic order) such that
a and c are attachment points of By, while b and d are attachment points
of BQ.

For a graph G with a cycle C, we define an overlap graph O(G, C) that has
the C-bridges in G as vertices, and two C-bridges are connected by an edge
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if they overlap. If G has a plane embedding, then in this embedding cycle
C partitions the rest of the plane into two disjoint open sets, the faces of
C. Observe that if two C-bridges B; and By overlap, then they cannot be
both drawn in the same face of C' without intersection. This implies that if
G is indeed planar, then the overlap graph O(G, C) has to be bipartite: sides
of the bipartition of O(G, C) correspond to C-bridges that are placed inside
and outside the cycle C.

The following criterion of planarity states that the condition that O(G, C)
is bipartite is not only necessary for G to be planar, but also sufficient. We
leave its proof as Exercise

Lemma 7.43. Let C be a simple cycle in G. Then G is planar if and only if
(i) for every C-bridge B, graph C U B is planar, and (ii) the overlap graph
O(G, C) is bipartite.

We now introduce the notation for separators in planar graphs. Let G
be a connected graph, and let u,v be two distinct vertices. A set X is a
(u,v)-separator if u,v ¢ X, but every u-v path contains a vertex of X. Note
that in this definition we assume that the separator does not contain either
u or v, contrary to separators that we used in Section [7.6| The connected
component of G — X that contains v is called the v-component, and its vertex
set will be denoted by R(v,X). Equivalently, R(v, X) is the set of all the
vertices of G that are reachable from v via paths that avoid X. We say that
X is a connected separator if G[X] is connected, and is a cyclic separator if
G[X] contains a Hamiltonian cycle. Of course, every cyclic separator is also
connected.

The following lemma will be a technical tool needed in delicate reasonings
about finding an irrelevant vertex.

Lemma 7.44. Let G be a connected graph, and suppose u,v € V(G) are two
distinct vertices. Let X1 and X5 be two disjoint connected (u,v)-separators
and let R; = R(v, X;) fori = 1,2. Then either R{UX; C Ry or RoUX, C R;.

Proof. Let P be any walk in G that starts at v and ends in u. Since X; and
X5 separate u from v, P meets both a vertex of X; and a vertex of Xs5. Let
h1(P) be the first vertex on P that belongs to X; U X5, and let ho(P) be the
last such vertex; in this definition P is traversed from v to u.

We claim that if hy(P) € X; then ho(P) € X5, and if hy(P) € X5 then
ha(P) € X;. These statements are symmetric, so let us prove only the first
implication. Assume, for the sake of contradiction, that ho(P) € Xy (recall
that X; and X, are disjoint). Then consider the following v-u walk in G: we
first traverse P from v to hi(P), then by connectivity of X; we can travel
through G[X1] to ha(P), and finally we traverse the end part of P from hs(P)
to u. Since X, is disjoint from X, by the definition of hy(P) and ho(P) we
infer that this walk avoids X5. This is a contradiction with X5 being a (u, v)-
separator.
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Let us fix any v-u walk P and suppose that hy(P) € X; and ho(P) €
X5. We will prove that in this case Ry U X; C Rs; the second case when
h1(P) € X5 and ho(P) € X; leads to the conclusion that Re U Xy C Ry in
a symmetric manner. Take any other v-u walk P’. We claim that for P’ it
also holds that hq(P’) € X; and ho(P’) € X5. For the sake of contradiction,
assume that hy(P’) € X5 and ha(P’) € X;. Consider the following v-u walk
P”: we first traverse P from v to hi(P), then by connectivity of X; we can
travel through G[X1] to ho(P’), and finally we traverse the end part of P’
from hy(P’) to u. Again, by the same arguments as before walk P” avoids
X,, which is a contradiction to X5 being a (u, v)-separator.

We now know that for every v-u walk P it holds that hi(P) € X; and
ha(P) € X5. We shall prove that R; C Rs. Observe that this will prove also
that Xy C R, since X7 is connected, disjoint from X5, and adjacent to R
via at least one edge due to the connectivity of G. Take any w € Rj; we
need to prove that w € Ry as well. Let P, be any v-w walk that is entirely
contained in G[R;]. Prolong P, to a v-u walk P! by appending an arbitrarily
chosen w-u walk. Observe now that no vertex of P, can belong to Xy — in
such a situation we would have that hi(P)) € Xs, since no vertex of P,
belongs to X;. Hence path P, omits Xo, which proves that w € Ry. As w
was chosen arbitrarily, this concludes the proof. a

We are now ready to state the irrelevant vertex rule.

Definition 7.45 (Irrelevant vertex). Let G be a graph and & be an integer.
A vertex v of G is called an irrelevant vertex if for every vertex set D of size
at most k, G — D is planar if and only if G — (D U {v}) is planar.

Thus if v is an irrelevant vertex, then (G, k) is a yes-instance if and only if
(G—w, k) is. The following lemma establishes a criterion of being an irrelevant
vertex, and is the crucial ingredient of the algorithm.

Lemma 7.46. Let (G,k) be an instance of PLANAR VERTEX DELETION.
Suppose v is a vertex of G such that there exists a verter u # v and a
sequence of pairwise disjoint cyclic (v,u)-separators X1, Xs, ..., Xpio with
the following properties:

(a) for every i € {1,...,k+ 1}, X, is a subset of the R(v, X;41), and
(b) the graph G[R(v, Xjy2) U Xg12] is planar.

Then v is an irrelevant vertex for the instance (G, k).

Proof. Let v be a vertex of G that satisfies the conditions of the lemma. We
show that for every set D of size at most k, G — D is planar if and only if
G — (D U {v}) is planar.

If G — D is planar then clearly G — (D U {v}) is planar. Suppose then
that G — (D U {v}) is planar. By the conditions of the lemma, there exists a
vertex u, u # v, and vertex-disjoint cyclic (v, u)-separators X1, Xo, ..., Xk12
satisfying properties (a) and (b). For i = 1,2,...,k + 2, let R; = R(v, X;).
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Fig. 7.8: Situation in the proof of Lemma Cycle C is depicted in blue.
C-bridges B, in G — (D U{v}) that are originate in B, are depicted in yellow
and red. The yellow C-bridge is the one that contains X;; it may not exist, but
if it exists then it is unique. The other C-bridges (depicted red) are entirely
contained in R;, and hence they do not have any attachment points on C

Since separators X; are pairwise disjoint and connected, from Lemma [7.44]
and property @ we infer the following chain of inclusions:

{v} CRICRIUX1 CRyCRUX>C ... CRpyo C RpqoUXpyo.

As |D| < k, there are two separators X; and X; that contain no vertices
from D. Assume without loss of generality that ¢ < j; then we have also
R;UX; CRj.

Let C' be a Hamiltonian cycle in G[X;]|. In order to show that G — D
is planar, we want to apply the planarity criterion of Lemma to cycle
C and graph G — D. First of all, every C-bridge B in G — D that does not
contain v is also a C-bridge in G — (DU{v}), and hence BUC'is planar. Also,
if B, is a C-bridge of G — D that contains v, then B, U C' is a subgraph of
G[R; U X;], which in turn is a subgraph of the planar graph G[Rj2 U Xj 2]
(property (b))). Hence B, U C is also planar.

Now we focus on the overlap graph O(G — D, C). Let B, be the C-bridge
of G — D that contains v. Then B, = By U---U B, U {v}, where B, for
g €{1,2,...,p} are some C-bridges in G — (DU{v}). Consider one B,. Since
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R;UX; C R; and R; is a connected component of G—Xj, it follows that B, can
have a neighbor in X; only if B, contains some vertex of X;. Hence, every B,
that has an attachment point on C must intersect X;. However, separator X;
is connected and disjoint from D, so there is a unique C-bridge in G—(DU{v})
that contains the whole X;. Therefore, we infer that among By, ..., B, there
can be at most one C-bridge that actually has some attachment points on C—
this is the C-bridge that contains X;—and all the other B;s are completely
contained in R;. As these other C-bridges do not have attachment points,
they are isolated vertices in O(G — (DU {v}), X). On the other hand, the C-
bridge B, that contains X;, provided that it exists, has the same attachment
points on C' as C-bridge B, in G — D.

Concluding, graph O(G — (D U{v}), X) can differ from O(G — D, X) only
by having some additional isolated vertices, which correspond to C-bridges
adjacent to v that are contained in R;. Because O(G — (D U {v}), X) is
bipartite, we have that O(G — D, X) is also bipartite. Thus all the conditions
required by Lemma are satisfied, and we can conclude that G — D is
planar. a

Now that we are armed with the irrelevant vertex rule, we can proceed to
the algorithm itself. Essentially, the strategy is to try to find a situation where
Lemmal[7.46| can be applied, provided that the treewidth of the graph is large.
Note that, due to property (]E[) from the statement of Lemma we will
need to identify a reasonably large part of the graph that is planar. Therefore,
it would be perfect if we could work on a graph where a large planar part
has been already identified. However, this is exactly the structure given to
us as an input in the problem DisJOINT PLANAR VERTEX DELETION. That
is, G — D is planar. Thus, to prove Theorem [7.42]it is sufficient to show the
following lemma.

Lemma 7.47. DisJOINT PLANAR VERTEX DELETION on an n-vertex graph
. . 2 . .,

can be solved in time 200 102K)n00)  Moreover, in the case of a positive

answer, the algorithm can also return a planar deletion set of size at most k.

Proof. The idea of the algorithm is as follows. Graph G — D is planar. Let
us apply the algorithm of Theorem to graph G — D for e = % and some
parameter f(k) to be defined later. If we find a tree decomposition of G — D
of width at most 5f(k), then we can create a tree decomposition of G of
width at most 5f(k) + |D| < 5f(k) + k+ 1 by simply adding D to every bag.
In this situation we can use dynamic programming to solve the problem in
FPT time. Otherwise, if the algorithm of Theorem [7.23] fails to construct a
tree decomposition, then it returns an f(k) x f(k) grid minor in G — D. We
will then show that G contains an irrelevant vertex which can be identified
in polynomial time. Hence, we can identify and delete irrelevant vertices up
to the point when the problem can be solved by dynamic programming on a
tree decomposition of bounded width.

It is not difficult to show that PLANAR VERTEX DELETION admits an
FPT dynamic-programming algorithm when parameterized by the width of
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a given tree decomposition of the input graph. For example, one can make
use of the optimization version of Courcelle’s theorem (Theorem [7.12)): we
write an MSO; formula (D) for a free vertex set variable D, which ver-
ifies that G — D is planar by checking that it contains neither a Kj-minor
nor a K3 s-minor. Then minimizing |D| corresponds to finding the minimum
possible size of a planar deletion set in G. In this argument we can also eas-
ily handle annotations in DISJOINT PLANAR VERTEX DELETION, since we
may additionally require in the formula that D has to be disjoint from the
set of forbidden vertices. This gives some FPT algorithm for DISJOINT PLA-
NAR VERTEX DELETION. However, obtaining explicit and efficient bounds on
the running time requires additional ideas and more technical effort. In our
algorithm we shall use the following result, which we do not prove here.

Lemma 7.48 (|277]). DiSJOINT PLANAR VERTEX DELETION can be solved
in time 29180 on an n-vertex graph given together with its tree decom-
position of width at most t. Moreover, in the case of a positive answer, the
algorithm can also return a planar deletion set D that has size at most k and
is disjoint from the forbidden vertices.

We have already all the tools to deal with the bounded-treewidth case, so
now let us try to find a place to apply Lemma [7.46] if the treewidth is large.
Let us fix p =2k +5 and f(k) = (p+4)(k+2), and let H be the f(k) x f(k)
grid. Recall that if the algorithm of Theorem fails to construct a tree
decomposition of small width of G — D, it provides a minor model of H in
G — D. Let this minor model be (Iy),ev (#); recall that every branch set I,
is connected and all the branch sets are pairwise disjoint. Moreover, let Gy
be the connected component of G — D that contains H. From the graph G
we construct a new graph G, by performing the following steps:

e First, delete all the vertices of G — D apart from the component Gg.

e Then, for every w € V(H) contract Gg[l,,] into a single vertex, which will
be called n(w).

o Iteratively take a vertex u € V(Gpy) that does not belong to any branch
set I, and contract v onto any of its neighbor (such a neighbor exists due
to connectivity of Gy ). Perform this operation up to the point when there
are no more original vertices of V(Gp) left.

In this manner, V(G.) consists of set D and set {n(w) : w € V(H)} that
induces in G, a graph H that is a supergraph of grid H. In other words, G
consists of a partially triangulated f(k) x f(k) grid H and a set of apices D
that can have quite arbitrary neighborhoods in H.Forw e V(H), let J,, be
the set of vertices of Gy that got contracted onto w. Note that I, C J,,
G'[Jy] is connected, and (Jy)wev sy forms a partition of V(G ).

After these operations we more-or-less see a large, flat area (planar) in the
graph, which could possibly serve as a place where Lemma@ is applied.
However, we do not control the interaction between D and H. The goal now
is to show that this interaction cannot be too complicated, and in fact there
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Fig. 7.9: Choosing the family of subgrids P in a large grid H. The grids of
P are depicted in dark grey, and their 1-frames and 2-frames are depicted in
light grey

exists a large enough subgrid of H that is completely nonadjacent to D. From
now on, by somewhat abusing the notation we will identify grid H with its
subgraph in H via mapping 7; note that thus V(H) = V(H), and H can only
have some additional edges.

Let us partition grid H into smaller grids. Since H is an f(k) x f(k) grid
for (p+4)(k+2), we can partition it into (k+2)? grids of size (p+4) x (p+4).
Now for each of these subgrids perform twice the following operation: delete
the whole boundary of the grid, thus “peeling” twice a frame around the grid.
If M is the obtained p x p subgrid, then by 2-frame and 1-frame of M, denoted
by F3(M) and Fy(M), we mean the boundaries removed in the first and in
the second step, respectively. Thus, the 2-frame of M induces in H a cycle of
length 4(p + 3) around M, and the 1-frame induces a cycle of length 4(p+ 1)
around M. See Fig.[7.9|for a visualization of this operation. Let P be the set
of obtained p x p grids M (i.e., those after peeling the frames).

We now prove the following claim, which bounds the interaction between
a single vertex of D and the grids from P.

Claim 7.49. If (G,k, D) is a yes-instance of DISJOINT PLANAR VERTEX
DELETION, then in graph G. no vertex of D can have neighbors in more than
k+ 1 grids from P.
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Proof. For the sake of contradiction, assume that there is a set D’ C V(G)\ D
such that |D’| < k and G— D’ is planar, and suppose that there exists a vertex
x € D that in G, has neighbors in k+2 of p x p grids from P. We now examine
what happens with set D’ during the operations that transform G to G.. Let
D, be the set of those vertices of G, onto which at least one vertex of D’
was contracted. In other words, whenever we contract an edge, we consider
the resulting vertex to be in D’ if and only if one of the original endpoints
was in D’, and we define D, to be the set of vertices of G, that end up being
in D’ after all these contractions. It follows that |D.| < |D’'| < k, D, is still
disjoint from D, and G. — D, is a planar graph.

Since D, is of size at most k, there exist at least two p x p subgrids from
P, say Y and Z, which are adjacent to x in G, and such that D, does not
contain any vertex of Y, or of Z, or of 1- and 2-frames of Y and Z. Let y be
an arbitrary neighbor of z in Y, and similarly define z € Z.

It is easy to see that for any two distinct p x p grids of P, there are at
least p > k vertex-disjoint paths in H that connect these grids. One of these
paths does not contain any vertex from D.. Thus, in H there exists a path P
from y to z that contains no vertex of D.: we first travel inside Y from y to
the border of Y, then we use a D.-free path connecting Y and Z, and finally
we get to z by travelling inside Z.

Let us stop for a moment and examine the current situation (see also
Fig. [7.10). We have identified two subgrids Y and Z that are completely free
from D, together with their frames. Moreover, these two subgrids can be
connected inside H by a path that is also free from D,.. So far the picture is
planar, but recall that we have an additional vertex x that is adjacent both
to y € Y and to z € Z. This vertex thus creates a “handle” that connects
two completely different regions of grid H. As we assumed that z € D and
D, is disjoint from D, we have that « ¢ D., and hence this additional handle
is also disjoint from D.. Now the intuition is that the obtained structure
is inherently non-planar, and therefore it cannot be contained in the planar
graph G. — D.. To prove this formally, the easiest way is to exhibit a model
of a Ks-minor in G, that does not use any vertex of D.. The construction is
depicted in Fig.

We start with constructing a minor of K5 without one edge in YU F; (Y)U
F5(Y). Recall that x is adjacent to y € Y and z € Z. Define the following
branch sets I, I, ..., I5s. First, take I = {y}. Then, it is easy to see that one
can partition (Y U F1(Y)) \ {y} into three connected sets Is, I3, I, such that
each of them is adjacent both to y and to F»(Y). Finally, take I5s = F»(Y).
Thus all the pairs of branch sets are adjacent, apart from I; and I5. To
create this additional adjacency, we use vertex x. More precisely, we extend
the branch set I3 by including z, z, and all the vertices from the path P
traversed from z up to the point when it meets F»(Y"). In this manner, branch
set I is still connected, and it becomes adjacent to I5. In this construction we
used only vertices that do not belong to D., which means that 11, I5,...,I5
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Fig. 7.10: Construction of a Ks-minor using x and adjacent subgrids Y and
Z. Path P connecting y and z is depicted in blue.

form a Ks-minor model in G, — D.. This is a contradiction with D, being a
planar deletion set for G.. J

By Claim[7.49] in graph G, every vertex of D has neighbors in at most k+1
subgrids from P, or otherwise we may immediately terminate the subproblem
by providing a negative answer. Since |P| = (k +2)? and |D| < k + 1, this
means that we can find at least one p x p subgrid M € P that has no
neighbors in D. Let v, be the middle vertex of M, and let v be any vertex
of J,,. We claim that v is irrelevant, and to prove this we will need to verify
the prerequisites of Lemma

Since p = 2k + 5, we can find k + 2 vertex sets N1, N, ..., Nyio C V(M)
such that N; induces the i-th cycle in M around v, counting from v.. In other
words, sets Ngya, Nk11, ..., N7 are obtained from M by iteratively taking the
boundary of the grid as the next N;, and removing it, up to the point when
only v, is left. If we now uncontract the vertices of NV;, then we obtain a
connected set Y; = UweV(Ni) Jw- For each ¢ € {1,2,...,k + 2}, let C; be a
cycle inside G'[Y;] that visits consecutive branch sets J,, for w € V(IV;) in
the same order as the cycle induced by N; in M. Let X; = V(C;), and let us
fix any vertex u € V(Gu) \Uyev (ar) Jw; such a vertex exists since M is not
the only grid from P.

Claim 7.50. Vertices v and v and sets X1, Xa, ..., Xpt+2 satisfy the prerequi-
sites of Lemmafor the instance (G, k) of PLANAR VERTEX DELETION.
Consequently, vertez v is irrelevant for (G, k).
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Fig. 7.11: The crucial argument in the proof of Claim [[50 paths Py, Py, Ps,

and Py certify that v and y have to be placed on different faces of C; in any
planar drawing of Gy

Proof. The two prerequisites that are trivial are that each X; induces a graph
with a Hamiltonian cycle, and that X; C R(v, X;+1). The first follows directly
from the definition, and the second follows from the existence of connections
between branch sets (Jy)wey gy implied by M.

Therefore, we need to prove that (i) each X is indeed a (u,v)-separator,
and (ii) G'[Xj42 U R(v, Xj12)] is planar. For ¢ € {0,1,2,...,k + 2}, let
Ne; = {v} UN; UN;U...UN; and let W; be the set of vertices of Gy
contained in branch sets J, for w € N<;. To prove (i) and (ii), we shall
show that for each ¢ > 1, it holds that R(v, X;) C W;. In other words, all
the vertices that can be connected to v via paths avoiding X; are actually
contained in Gy, and moreover get contracted onto vertices contained in the
union of the deepest ¢ layers in M. Note that this statement implies (i), since
u ¢ Wyio, and also it implies (ii), since then G[Xpt2 U R(v, Xj12)] is an
induced subgraph of the planar graph G — D.

Consider any y € V(Gg) \ W;; then in G. vertex y gets contracted onto
some w, ¢ N<;. Choose four vertices wy, wg, ws and ww, placed in the
interiors of the north, east, south, and west side of the cycle M[N;], respec-
tively; see Fig. Since M does not touch the boundary of H (it has at
least two frames peeled), it can be easily seen that in Gy we can find four
paths Py, Pg, Pg and Py such that the following holds:
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e Py and Pg connect y with the cycle C; such that both Pg and Py travel
only through branch sets J,, for w ¢ N<;, apart from J,,, in the case of
Pg, and J,,,, in the case of Py. Then Pp meets C; inside J,,, and Py
meets C; inside J,, .

e Py and Pg connect v with the cycle C; such that both Py and Pg travel
only through branch sets .J,, for w € N<;_1, apart from J,,, in the case
of Py, and J, in the case of Pg. Then Py meets C; inside J,,, and Pg
meets C; inside J,.

Note that the family of branch sets visited by Py U Pg is disjoint from the
family of branch sets visited by Py U Ps. Hence, subgraphs Py U Pg and
Pn U Pg are vertex-disjoint.

Consider now subgraph Gp = Py U Py U PsU Py UC; of Gy. Gp is
obviously planar as a subgraph of a planar graph, and it has two C;-bridges:
the first Py U Ps contains v, and the second PgU Py, contains y. Each of these
C;-bridges has two attachment points, and all these four attachment points
interleave. It follows that for every planar embedding of G p, vertices v and
y must be drawn on different faces of the cycle C;. Since Gp is a subgraph
of Gy, the same holds for Gy as well.

We are now ready to prove that R(v, X;) C W;. For the sake of contradic-
tion, suppose that some vertex y ¢ W, can be reached from v via a path P
that avoids X;. By taking the first vertex outside W; on P, we may assume
without loss of generality that all the other vertices on P belong to W;. Let
y’ be the predecessor of y on P; then ¢y’ € W;. Now examine where y can be
localized in graph G. It cannot belong to D, since we know that in G, all the
vertices of D are not adjacent to any vertex of M, and in particular not to
the vertex onto which 3 was contracted. Also, obviously it cannot belong to
a different component of G — D than G, since y' € W; C V(G g ). Therefore,
we are left with the case when y € V(Gg) \ W;. But then we know that v
and y must be drawn on different faces of C;, so every path contained in Gy
that connects v and y has to intersect X;. This should in particular hold for
P, a contradiction. N

By Claim we conclude that vertex v is irrelevant, so we can safely
delete it and proceed. Note that by the definition of being irrelevant, removal
of v is also safe in the disjoint variant of the problem that we are currently
solving.

The reader may wonder now why we gave so elaborate a proof of Claim [7.50]
even though its correctness is “obvious from the picture”. Well, as the proof
shows, formal justification of this fact is far from being trivial, and requires
a lot of attention to avoid hand-waving. This is a very common phenomenon
when working with planar graphs: facts that seem straightforward in a pic-
ture, turn out to be troublesome, or even incorrect, when a formal argument
needs to be given. A good approach here is to try to identify the key formal
argument that exploits planarity. In our case this argument was the observa-
tion that in G, set X; has to separate v from every vertex y € V(Gp) \ Wi,



228 7 Treewidth

because v and y have to lie on different faces of C; in every planar embedding
of Gg. Once the key argument is identified and understood, the rest of the
proof follows easily.

To summarize, we solve DISJOINT PLANAR VERTEX DELETION with the
following algorithm.

e In polynomial time we are able either to conclude that this is a no-instance,
or to identify an irrelevant vertex and delete it. We repeat this procedure
until the treewidth of G— D becomes at most 5f(k), and the corresponding
tree decomposition can be constructed.

e When we have at hand a tree decomposition of G — D of width at most
5f(k), we use Lemma [7.48]to solve the subproblem in time 200/ (k) 1og f(k))

Since f(k) = O(k?), the total running time of our algorithm solving DISJOINT
PLANAR VERTEX DELETION is 20(/(k)log f(K)) ., O(1) — 90(k*logk) ., 0(1)

As discussed before, Lemma with a standard application of the iter-
ative compression technique (see Section concludes the proof of Theo-
rem We remark that with more ideas, the running time of the algorithm
can be improved; see the bibliographic notes.

7.9 Beyond treewidth

Given all the presented applications of treewidth, it is natural to ask if one
could design other measures of structural complexity of graphs that would be
equally useful from the algorithmic viewpoint. So far it seems that treewidth
and pathwidth are the most successful concepts, but several other approaches
also turned out to be fruitful in different settings. In this section we review
briefly two examples of other width measures: branchwidth and rankwidth.
While the first one is tightly related to treewidth, the second one goes beyond
it.

Branch decompositions and f-width. It will be convenient to introduce a
more generic approach to defining structural width measures of combinatorial
objects. Assume we are working with some finite universe U, and suppose we
are given a function f defined on subsets of U that, for a subset X C U, is
supposed to measure the complexity of interaction between X and U \ X.
More precisely, f: 2V — R is a function that satisfies the following two
conditions:

e Symmetry: for each X C U, it holds that f(X) = f(U \ X);
e Fairness: f(0) = f(U)=0.

Function f will be also called a cut function, or a connectivity function.
Given some cut function f on U, we may define a class of structural de-
compositions of U. A branch decomposition of U is a pair (T,7), where T is a
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tree with |U| leaves whose all internal nodes have degree 3, and 7 is a bijec-
tion from U to the leaves of T. Consider any edge e € E(T). If we remove e
from T', then T gets split into two subtrees, and thus the set of leaves of T is
also partitioned into two sets. Leaves of T" correspond one-to-one to elements
of U, so let (X,,Y.) be the corresponding partition of U. We define the width
of edge e in (T,n) as f(X.) = f(Y.); this equality holds due to the symmetry
condition on f. The width of (T,7) is the maximum width among its edges.
The f-width of set U, denoted by w;(U), is equal to the minimum possible
width of its branch decomposition. If |U| = 1 then there is no decomposition,
so we put wy(U) = 0.

This definition is generic in the sense that we may consider different com-
binatorial objects U and various cut functions f, thus obtaining a full vari-
ety of possible structural parameters. Both branchwidth and rankwidth are
defined as f-widths for appropriately chosen U and f. However, the defi-
nition of f-width can be used to define structural width parameters of not
only graphs, but also hypergraphs and matroids. Also, one often assumes
that the cut function f is additionally submodular, i.e., it satisfies property
FX)+fY) > f(XUY)+ f(XNY) for all X, Y C U. This property pro-
vides powerful tools for approximating the f-width of a given set. In the
bibliographic notes we give some pointers to literature on this subject.

Branchwidth. To define branchwidth of a graph G, we put U = E(G), the
edge set of G. For every X C E(G), its border 6(X) is the set of those vertices
of G that are incident both to an edge of X and to an edge of E(G)\ X. The
branchwidth of G, denoted by bw(G), is the f-width of U = E(G) with cut
function f(X) = |6(X)].

It turns out that branchwidth is in some sense an equivalent definition
of treewidth, expressed in the formalism of branch decompositions. More
precisely, for every graph G with bw(G) > 1 it holds that

bw(@) < tw(Q) +1 < gbw(G). (7.13)

In many situations branchwidth turns out to be more convenient to
work with than treewidth, for example when it comes to some dynamic-
programming algorithms. More importantly, branchwidth seems to behave
more robustly on planar graphs. In particular, branchwidth of a planar graph
can be computed in polynomial time, whereas the computational complexity
of treewidth on planar graphs remains a longstanding open question. Also,
in the proof of the Planar Excluded Grid Theorem (Theorem it is more
convenient to relate the size of the largest grid minor in a graph to its branch-
width rather than to treewidth, for instance when one tries to refine/improve
constants. Actually, the version of Gu and Tamaki that we gave here was
originally stated for branchwidth, and then the bound was translated for

treewidth using ([7.13)).
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It is worth mentioning that branchwidth does not use the notion of vertices
and hence generalizes to matroids while treewidth is tied to vertices.

Rankwidth. The motivation of rankwidth comes from the observation that
many computational problems are tractable on classes of graphs that are
dense, but structured. An obvious example of such graphs are complete
graphs, but one can also allow a little bit more freedom in the structure.
For instance, take the class of cographs, that is, graphs that can be con-
structed from single vertices using two types of operations: (a) taking a dis-
joint union of two constructed cographs, and (b) taking a disjoint union of
two constructed cographs and adding a complete bipartite graph between
their vertex sets.

This recursive definition of cographs allows us to solve many computational
problems using, again, the principle of dynamic programming. Essentially,
we exploit the fact that the algebraic structure of cographs is simple — the
adjacency relation between pieces in their decomposition is trivial: full or
empty. However, cographs are dense in the sense that the number of edges
may be quadratic in the number of vertices. Hence, their treewidth can be
even linear, and all the tools that we developed in this chapter may not be
applicable at all. Therefore, it is natural to introduce a new type of structural
decomposition, where the main measure of width would not be the cardinality
of a separator, but rather the complexity of the adjacency relation between
a part of the decomposition and the rest of the graph.

Historically, the first width parameter whose goal was to capture this phe-
nomenon was cliquewidth. We do not give here its formal definition due to its
technicality. Intuitively, a graph is of cliquewidth at most k if it can be built
from single vertices by consecutively joining already constructed parts of the
graph, and in each constructed part the vertices can be partitioned into at
most k types such that vertices of the same type will be indistinguishable
in later steps of the construction. The combinatorics of cliquewidth, while
convenient for designing dynamic-programming algorithms, turned out to be
very difficult to handle from the point of view of computing or approximat-
ing this graph parameter. For this reason, rankwidth has been introduced.
Rankwidth is equivalent to cliquewidth in the sense that its value is both
lower- and upper-bounded by some functions of cliquewidth. However, for
rankwidth it is much easier to design exact and approximation algorithms.

We now proceed to formal definitions. For a vertex set X C V(G), we
define its cut-rank pe(X) as follows. Consider an |X| x |[V(G) \ X| ma-
trix Ba(X) = (be,y)zex, yev(e)\x With rows indexed by vertices of X and
columns indexed by vertices of V(G) \ X. Entry b, , is equal to 1 if  and y
are adjacent, and 0 otherwise. Thus, Bg(X) is exactly the adjacency matrix
of the bipartite graph induced by G between X and V(G) \ X. We define
pc(X) to be the rank of Bg(X), when treated as a matrix over the binary
field GF(2). Then the rankwidth of G, denoted by rw(G), is equal to the
pe-width of V(G).
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It is easy to prove that for any graph G it holds that rw(G) < tw(G), see
Exercise [7.53] However, as expected, treewidth cannot be bounded by any
function of rankwidth. To see this, observe that the rankwidth of a complete
graph on n vertices is at most 1, while its treewidth is n — 1. Hence, classes of
graphs that have bounded treewidth have also bounded rankwidth, but not
vice versa.

Designing dynamic-programming routines for graphs of bounded rankwidth
are similar to those of treewidth. Instead of exploiting the property that the
already processed part of the graph communicates with the rest via a small
separator, we use the fact that the matrix encoding adjacency relation be-
tween the processed part and the rest has small rank. This enables us to
partition the processed vertices into a bounded number of classes that have
exactly the same neighborhood in the rest of the graph. For some problems,
vertices of the same type can be treated as indistinguishable, which leads to
reducing the number of states of the dynamic program to a function of k.

As in the case of treewidth, dynamic-programming algorithms on graphs
of bounded rankwidth can be explained by a meta-theorem similar to Cour-
celle’s theorem. For this, we need to weaken the MSO5 logic that we de-
scribed in Section [7.4.9] to MSO; logic, where we forbid quantifying over
subsets of edges of the graph. Then, analogues of Theorems and
hold for MSO; and graphs of bounded rankwidth. It should not be very sur-
prising that rankwidth, as a parameter upper-bounded by treewidth, supports
fixed-parameter tractability of a smaller class of problems than treewidth. In-
deed, some problems whose fixed-parameter tractability when parameterized
by treewidth follows from Theorem turn out to be W[1]-hard when pa-
rameterized by rankwidth, and hence unlikely to be FPT. Examples include
HamizTroNIAN CYCLE and EDGE DOMINATING SET; again, it is not a coin-
cidence that these are problems where quantification over a subset of edges
is essential.

When it comes to the complexity of computing rankwidth, the situation
is very similar to treewidth. Hlinény and Oum [263] gave an f(k) - n©™)-
time algorithm computing a branch decomposition of rankwidth at most k,
or correctly reporting that the rankwidth of a given graph is more than k.
An approximation algorithm with factor 3 for rankwidth, running in time
20(k) . nO0) | was given by Oum [377].

Exercises

7.1. Prove Lemma [7.9]
7.2. Prove Lemma [7.4

7.3 (&). Find an example showing that the bound O(k|V(G)|) on the number of nodes
of a nice tree decomposition cannot be strengthened to O(|V(G)|).
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7.4. Let T = (T,{Xt}iev(r)) be a tree decomposition of graph G, ¢ be a node of 7', and
Xt be the corresponding bag. Show that for every connected component C' of G — X, the
vertices of C' are contained in bags of exactly one of the connected components of T — t.

7.5. Prove Lemma [T.3]

7.6. Prove that every clique of a graph is contained in some bag of its tree decomposition.
Infer that tw(G) > w(G) — 1, where w(G) denotes the maximum size of a clique in G.

7.7 (&). Show that treewidth is a minor-monotone parameter, i.e., for every minor H of
a graph G, tw(H) < tw(G).

7.8 (£&). What is the treewidth of (a) a complete graph; (b) a complete bipartite graph;
(c) a forest; (d) a cycle?

7.9 (&7). Show that the treewidth of a graph G is equal to the maximum treewidth of its
biconnected components.

7.10 (&). Show that the pathwidth of an n-vertex tree is at most [logn]. Construct a
class of trees of pathwidth k and O(3%) vertices.

7.11 (&). Prove that a graph has treewidth at most 2 if and only if it does not contain
K4 as a minor.

7.12. A graph is outerplanar if it can be embedded in the plane in such manner that all
its vertices are on one face. What values can treewidth of an outerplanar graph have?

7.13 (£7). Prove that the treewidth of a simple graph cannot increase after subdividing
any of its edges. Show that in the case of multigraphs the same holds, with the exception
that the treewidth can possibly increase from 1 to 2.

7.14. A graph G is called d-degenerate if every subgraph of G contains a vertex of degree
at most d. Prove that graphs of treewidth k are k-degenerate.

7.15. Let G be an n-vertex graph of treewidth at most k. Prove that the number of edges
in G is at most kn.

7.16 (&). For a graph G given together with its tree decomposition of width ¢, construct
in time t®Mp a data structure such that for any two vertices z,y € V(G), it is possible
to check in time O(t) if  and y are adjacent. You should not use any results on hashing,
hash tables, etc.

7.17 (£7). Remodel the dynamic-programming algorithm of Section so that it uses
the following definition of the value of a state: for Y C Xy, value c[t,Y] is equal to the
maximum possible weight of an independent set in G[V; \ Y]. How complicated are the
recursive formulas, compared to the algorithm given in Section [7.3.1]

7.18. Construct the remaining algorithms listed in Theorem [7.9] That is, show algorithms
that, given an n-vertex graph together with its tree decomposition of width at most k,
solve:

e ODD CYCLE TRANSVERSAL in time 3% . k©(1) . p,
e MaxCur in time 2F - kO . p,
e ¢-COLORING in time ¢* - kO(1) . p,

7.19. Construct the remaining algorithms listed in Theorem That is, show that the
following problems can be solved in time k2*) . n on an n-vertex graph given together
with its tree decomposition of width at most k:
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FEEDBACK VERTEX SET,

HaMiLToNIAN PaTH and LoONGEST PATH,
HawmirToniaAN CycLE and LoNGEST CYCLE,
CHROMATIC NUMBER,

CycLE PackiIng,

CONNECTED VERTEX COVER,

CONNECTED DOMINATING SET,
CONNECTED FEEDBACK VERTEX SET.

7.20. List COLORING is a generalization of VERTEX COLORING: given a graph G, a set of
colors C, and a list function L : V(G) — 2€ (that is, a subset of colors L(v) for each vertex
v), the task is to assign a color c¢(v) € L(v) to each vertex v € V(G) such that adjacent
vertices receive different colors. Show that on an n-vertex graph G, LisT COLORING can
be solved in time n@tW(G)),

7.21 (2). Consider the following problem: given a graph G, find a minimum set of vertices
X C V(G) such that G — X does not contain a cycle on four vertices as a subgraph. Show

how to solve this problem in time 2(9(1@2)”0(1)7 where k is the treewidth of G.

7.22 (&). Consider the following problem: given a graph G, find an induced subgraph H
of G of maximum possible number of vertices, such that the size of the largest independent
set in H is strictly smaller than the size of the largest independent set in G. Show how to

solve this problem in time 220(k)n0(1), where k is the treewidth of G.

7.23. In the following problems, assume that the input graph G is given together with its
tree decomposition of width at most k.

e In the INDUCED MATCHING problem, given a graph G and an integer ¢, we ask if there
is a subset of 2/ vertices in G inducing a matching. Show that INDUCED MATcHING can
be solved in time 20()pO1),

o (B) For a fixed integer 7 > 1, the r-CrnTER problem, given a graph G and an integer
¢, asks to find ¢ vertices such that every other vertex of G is at distance at most r from
some of these vertices. Show that r-CenTER can be solved in time (r 4+ 1)0*)pO1),

. (,;Wg) SCATTERED SET, given a graph G and integers £ and d, asks for at least ¢ vertices

that are at pairwise distance at least d. Show that the problem can be solved in time
dO (k) O0(1)

7.24. Obtain an algorithm for VERTEX CoOVER running in time 1.3803*k°() + O(m+/n)
by combining branching on degree 4 vertices, the 2k vertex kernel of Theorem [2.21] and
the fact that a graph on n vertices of maximum degree 3 has pathwidth at most § + o(n),
and a path decomposition of such width can be constructed in polynomial time (see [195]).

7.25. Show that for a fixed graph H, the property “graph G does not contain H as a
minor” is expressible in MSOxs.

7.26. Using the cops and robber game, give an algorithm deciding in time n@®) if the
treewidth of a graph G is at most k.

7.27 (7). Show that every interval graph has no induced cycles of length more than 3.

7.28. This exercise consists of the crucial steps used to prove Theorem [7.16

1. For a pair of vertices u, v from the same connected component of graph G, a vertex set
S'is a (u,v)-separator if u,v ¢ S and v and v are in different connected components of
G — S. A (u,v)-separator is minimal, if it does not contain any other (u,v)-separator
as a proper subset. Finally, a set S is a minimal separator if S is a minimal (u,v)-
separator for some u,v € V(QG). Let us remark that a minimal separator S can properly
contain another minimal separator S’; this can happen if S’ separates other pair of
vertices than S. A connected component C of G — S is full if S = N(C). Show that
every minimal separator S has at least two full components.
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2. Show that every minimal separator of a chordal graph is a clique.

3. (Dirac’s Lemma) A vertex v is simplicial if its closed neighborhood N[v] is a clique.
Show that every chordal graph G on at least two vertices has at least two simplicial
vertices. Moreover, if G is not complete, then it has at least two nonadjacent simplicial
vertices.

4. Prove that every chordal graph G admits a tree decomposition such that every bag of
the decomposition is a maximal clique of G.

5. Prove Theorem [Z.16

7.29. We define a k-tree inductively. A clique on k+ 1 vertices is a k-tree. A new k-tree G
can be obtained from a smaller k-tree G’ by adding a new vertex and making it adjacent
to k vertices of G’ that form a clique in G’. Show that every k-tree is a chordal graph of
treewidth k. Prove that for every graph G and integer k, G is a subgraph of a k-tree if and
only if tw(G) < k.

7.30. Show that every maximal treewidth k-graph G, i.e., a graph such that adding any
missing edge to G increases its treewidth, is a k-tree.

7.31. We say that a graph G is an intersection graph of subtrees of a tree if there exists
a tree H and a collection (Hy),ev (@) of subtrees of H such that uv € E(G) if and only if
V(Hy) NV (Hy) # 0. Show that a graph is chordal if and only if it is an intersection graph
of subtrees of a tree.

7.32. Let G be an n-vertex graph, and let 0 = (v1,v2,...,vn) be an ordering of its vertices.
We define the width of o, denoted by t., as follows:

to = max |0({v1,v2,...,0:})|
1=0,1,...,n
The vertex separation number of a graph G, denoted by vsn(G), is equal to the minimum
possible width of an ordering of V(G). Prove that for every graph G, its vertex separation
number is equal to its pathwidth.

7.33 (£). It seems that in the algorithm of Theoremwe could directly use %—balanced
separators given by Lemma instead of %—balanced separations given by Lemma
and in this manner we could reduce the approximation factor from 4 to 3. Explain what
is the problem with this approach.

7.34. An n-vertex graph G is called an a-edge-ezpander if for every set X C V(Q) of size
at most n/2 there are at least a|X| edges of G that have exactly one endpoint in X. Show
that the treewidth of an mn-vertex d-regular a-edge-expander is 2(na/d) (in particular,
linear in n if o and d are constants).

7.35. Show that the dependency on k in the Excluded Grid Theorem needs to be 2(k2).
That is, show a graph of treewidth £2(k?) that does not contain a k x k grid as a minor.

7.36 (). Let H be a planar graph. Show that there is a constant cy such that the
treewidth of every H-minor-free graph is at most cgy. Show that planarity requirement
in the statement of the exercise is crucial, i.e., that Ks-minor-free graphs can be of any
treewidth.

7.37 (). Prove that for every ¢ > 1, B, contains a bramble of order ¢ + 1 and thus
tw(H) = t.

7.38. Prove the following version of the classic result of Lipton and Tarjan on separators
in planar graphs. For any planar n-vertex graph G and W C V(G), there is a set S C V(G)
of size at most g\/n + 1 such that every connected component of G — S contains at most

w .
% vertices of W.
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7.39 (). Using Corollary[7.24] prove that on an n-vertex planar graph G problems listed
in Theorem can be solved in time 20(v™) | while problems listed in Theorem can
be solved in time 20 (V7 logn),

7.40. Show that the following problems are bidimensional: FEEDBACK VERTEX SET, IN-
DUCED MATcHING, CYCLE PackiNg, ScaTTERED SET for a fixed value of d, LoNGEST
PatH, DoMINATING SET, and r-CENTER for a fixed r.

7.41. Show that ScaTTERED SET is FPT on planar graphs, when parameterized by k 4+ d.
For a constant d, give an algorithm with running time 20(VR)pO(1)

7.42. Define a vertex-subset maximization problem @ with the following property: for a
graph G with the maximum size of an independent set a(G) and the number of isolated ver-
tices ¢(G), it holds that OPTq(G) = max{0, a(G) — 2t(G)}. Prove that Q is bidimensional
and construct a family of planar graphs Gy, such that for every k > 1, OPT(Gy) = 0 and
tw(G) > k. Infer that in Lemma [7.28] the connectivity requirement is necessary.

7.43. Prove Lemma [T.43]

7.44 (2). The input of the ParTiaL VErTEX COVER problem is a graph G with two
integers k and s, and the task is to check if G contains a set of at most k vertices that
cover at least s edges. Show that on planar graphs Parriar VErRTEX CoOVER is FPT
when parameterized by k. Give a subexponential 20(VE) 01
VERTEX COVER on planar graphs.

-time algorithm for PARTIAL

7.45 (£). In the Trer SpANNER problem, given a connected graph G and an integer k,
the task is to decide if G contains a spanning tree H such that for every pair of vertices
u,v of G, the distance between u and v in H is at most k£ times the distance between u
and v in G. Show that on planar graphs TREE SPANNER is FPT when parameterized by k.

7.46. Prove that the bounds of Corollary and Theorem [7.33]| cannot be strengthened
to hold for pathwidth instead of treewidth. In other words, find an example of a planar
graph of constant diameter that has unbounded pathwidth.

7.47. Prove Lemma [T.36]

7.48 (8. Show that SusGraru IsoMORPHISM can be solved in time f(|V (H)|)|V (G)|©(tw(H))
for some function f.

7.49. Prove Lemma [T.37]

7.50 (&). Prove Lemmam

7.51. Prove Lemma [T401

7.52 (£2). Prove that cographs have rankwidth at most 1.

7.53. Prove that for any graph G it holds that rw(G) < tw(G) + 1.

7.54. A rooted forest is a union of pairwise disjoint rooted trees. A depth of a rooted forest
is the maximum number of vertices in any leaf-to-root path. An embedding of a graph G
into a rooted forest H is an injective function f : V(G) — V(H) such that for every edge
wv € E(G), f(u) is a descendant of f(v) or f(v) is a descendant of f(u). The treedepth of
a graph G is equal to the minimum integer d, for which there exists a rooted forest H of
depth d and an embedding of G into H.

Show that the pathwidth of a nonempty graph is always smaller than its treedepth.
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7.55 (&). Let G be a graph and consider the following cut function pg(X) defined for
X C V(G). We look at the bipartite graph Gx = (V(G), E(X,V(G) \ X)) induced in G
by the edges between X and V(G) \ X. Then pg(X) is equal to the size of the maximum
matching in this graph. The MM-width (mazimum-matching-width) of a graph G, denoted
by mmw(G), is equal to the pg-width of V(G).

Prove that there exist constants Ki, K2 such that for every graph G it holds that
K - tw(G) < mmw(G) < Kz - tw(G).

Hints

Let P = (X1, X2,...,Xr) be a path decomposition. First, add bags Xo = X, 41 =0
at the beginning and at the end of the sequence. Second, for every 0 < ¢ < r, insert a few
bags between X; and X,;41: first forget, one by one, all elements of X; \ X;;1, and then
introduce, one by one, all elements of X;4; \ X;. Finally, collapse neighboring equal bags.

Proceed in a way similar to Exercise [7.1] By introducing some intermediate introduce
and forget bags, ensure that every node of the tree with at least two children has its bag
equal to all bags of its children. Then, split such a node into a number of join nodes.

Fix some integers k and n, where n is much larger than k. Consider a graph G
consisting of:

1. aclique K on k vertices;
2. n vertices ai,a2,...,an, where each a; is adjacent to all the vertices of K;
3. n vertices b1,ba,...,bn, where each b; is adjacent only to vertex a;.

Argue that in any nice tree decomposition of G of width at most k, every vertex of K is
introduced roughly n times, once for every pair a;, b;.

Let v € C and assume v belongs to some bag of a connected component 7, of T — t.
By (T3), and since v ¢ X, all bags that contain v are bags at some nodes of T,. Together
with (T2), this implies that for every edge uv € E(G — X¢), both u and v need to appear
in bags of only one connected component of 7' — .

Let S = X4 N Xy Pick any vg € Vo \ S and v, € V4 \ S. If v, belong to some bag of
Ty, then, by (T3), va € Xq and vq € Xp, hence vq € S, a contradiction. Thus, v, appears
only in some bags of T, ; similarly we infer that v, appears only in some bags of T}. Hence,
by (T2), vavy ¢ E(G).

Let C be the vertex set of a clique in G. Use Lemma [7.3} for every edge st € E(T) of
a tree decomposition (7, {Xt}iev (1)), C C Vs or C C Vi (where Vs and V; are defined as
in Lemma [7.3] and Exercise [7.5). Orient the edge st towards an endpoint o € {s,t} such
that C' C V,. Argue that, if all edges of F(T) have been oriented in such a manner, then
C is contained in X, for any a € V(T') with outdegree zero, and that at least one such «
exists.

Let H be a minor of G, let (Vi)pev(s) be a minor model of H in G, and let
T,{Xt}iev(r)) be a tree decomposition of G. For every t € V(T), let X{ = {h € V(H) :
Vi N X¢ # 0}. Argue that (T, {X{}1ev (1)) is a tree decomposition of H of width not larger
than the width of (T‘7 {Xt}tEV(T))'

The treewidth of K, is n — 1, the lower bound is provided by Exercise [7.6} The
treewidth of K, ; is min(a, b), the lower bound is provided by Exercisesince Kmin(a,b)+1
is a minor of K ;. The treewidth of a forest is 1 if it contains at least one edge.
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Observe that it is easy to combine tree decompositions of biconnected components of
a graph into one tree decomposition, since their bags can coincide only in single vertices.

For the upper bound, consider the following procedure. In an n-vertex tree G, find
a vertex v such that every connected components of G — v has at most n/2 vertices.
Recursively compute path decompositions of the components of G — v, each of width at
most [logn/2] = [logn] — 1. Arrange them one after another, adding v to every bag in
the decomposition.

For the lower bound, using graph searching argue that if a tree G has a vertex v such
that at least three connected component of G — v have pathwidth at least k, then G has
pathwidth at least k + 1.

7.11] By Exercise and since tw(K4) = 3, we have that every graph containing Ky
as a minor has treewidth at least 3. The other direction is much more difficult: you need
to argue, by some case analysis, that in a bramble of order 4 you can always find the
desired minor. Alternatively, you may use the decomposition of graphs into 3-connected
components of Tutte; see [LI0]. If you follow this direction, you will essentially need to
prove the following statement: every 3-connected graph that has more than three vertices
contains K4 as a minor.

An isolated vertex, a tree and a cycle are outerplanar graphs, so the treewidth of
an outerplanar graph may be equal to 0, 1, or 2. Argue that it is always at most 2, for
example in the following way.

1. Assume that all vertices of an outerplanar graph G lie on the infinite face.

2. By Exercise assume G is biconnected.

3. Triangulate G, that is, add some edges to G, drawn inside finite faces of G, such that
every finite face of G is a triangle.

4. Let G* be the dual of G, and let f* € V(G*) be the infinite face. Observe that G* — f*
is a tree. Argue that, if you assign to every f € V(G* — f*) a bag X consisting of the
three vertices of G that lie on the face f, then you obtain a valid tree decomposition
of G.

Alternatively, one may prove that outerplanar graphs are closed under taking minors, and
use Exercise [7.11|combined with an observation that K4 is not outerplanar.

Since graphs of treewidth at most k are closed under taking subgraphs, it suffices
to show that every graph of treewidth at most k contains a vertex of degree at most k.
Consider a nice tree decomposition of a graph of treewidth at most k, and examine a vertex
whose forget node is furthest from the root.

Prove that a d-degenerate n-vertex graph has at most dn edges, and use Exercise[7.14]

Solution 1: Turn the given tree decomposition into a nice tree decomposition
(T, {Xt}tev(r)) of G of width t. For every v € V(G), let t(v) be the uppermost bag
in T that contains v. Observe that, for every uv € V(G), either u € Xy() or v € Xy(y)-
Hence, it suffices to remember A, := Ng(v) N Xy(,) for every v € V(G), and, for every
query (u,v), check if u € Ay or v € Ay.

Solution 2: Prove that for every d-degenerate graph G one can in linear time compute an
orientation of edges of G such that every vertex has outdegree at most d (while the indegree
can be unbounded). Then for every vertex v € V(G) we can remember its outneighbors in
this orientation. To check whether v and v are adjacent, it suffices to verify whether u is
among the outneighbors of v (at most d checks) or v is among the outneighbors of u (again,
at most d checks). This approach works for d-degenerate graphs, and by Exercise vve
know that graphs of treewidth at most k are k-degenerate.

7.19] For Curomaric NUMBER, argue that you need at most k£ + 1 colors. For other
problems, proceed similarly as in the dynamic-programming algorithm for STEINER TREE,
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given in Section In the cases of HamirroniaN Parn, LONGEST PaTH, LONGEST
CvycLE, and CycLE PAckING, you will need matchings between vertices of the bag instead
of general partitions of the bag.

In the state of the dynamic program, keep for every pair u,v of vertices in a bag,
whether there exists a common neighbor of v and v among the forgotten vertices that was
not hit by the solution. It is quite nontrivial that this information is sufficient for ensuring
that all Cy4s are hit, so be very careful when arguing that your algorithm is correct.

Consider a node t of a tree decomposition (7,{Xt}+ev () of the input graph G.
Let Vi be the union of all bags of descendants of ¢ in T'. In the dynamic-programming
algorithm, for every S C X; and every family A of subsets of X; \ S, we would like to
compute a minimum cardinality of a set S C V4 such that SN Xy =S and, moreover, the
following holds: for every independent set I in (G — §)[Vt} such that there does not exist
an independent set I’ in G[V;] with V; NI =V, NI’ and |I| < |I’|, the set V; N I belongs
to A.

For INpDUCED MATCHING, define the state by partitioning the bag at ¢ into three
sets: (a) vertices that have to be matched inside Gy; (b) vertices that will not be matched,
and play no role; (c) vertices that are “reserved” for matching edges that are yet to be
introduced, and hence we require them be nonadjacent to any vertex picked to be matched,
or reserved. For later points, think of the vertices of type (c) as sort of a “prediction”: the
state of the dynamic program encapsulates prediction of what will be the behavior in the
rest of the graph, and requires the partial solution to be prepared for this behavior.

For r-CENTER, use the prediction method: for every vertex of the bag, encapsulate
in the dynamic programming state (a) what the distance is to the nearest center from a
partial solution inside G (this part is called history), and (b) what the distance will be
to the nearest center in the whole graph, after the whole solution is uncovered (this part
is called prediction). Remember to check in forget nodes that the prediction is consistent
with the final history.

For SCATTERED SET, use the same prediction approach as for »-CENTER.

The idea is to encode the statement that G contains a minor model of H. We first
quantify the existence of vertex sets Vj, for h € V(H). Then, we need to check that (a)
every V}, is connected; (b) the sets V}, are pairwise disjoint; (c) if hihe € E(H), then there
exists viva € E(G) with v1 € V},, and v2 € Vj,. All three properties are easy to express
in MSOx.

Let us first introduce a classic approach to resolving problems about games on
graphs. The idea is to represent all configurations of the game and their dependencies
by an auxiliary game played on a directed graph called the arena. The node set V' of
the arena is partitioned into two sets of nodes Vi and Va. It also has a specified node
v € V corresponding to the initial position of the game, and a subset of nodes FF C V
corresponding to the final positions. In the auxiliary game there are two players, Player 1
and Player 2, who alternately move a token along arcs of the arena. The game starts by
placing the token on v, and then the game alternates in rounds. At each round, if the
token is on a vertex from V;, ¢ = 1,2, then the i-th player slides the token from its current
position along an arc to a new position, where the choice of the arc depends on the player.
Player 1 wins if she manages to slide the token to a node belonging to F', and Player 2
wins if she can avoid this indefinitely.

Prove that there exists an algorithm with running time depending polynomially on the
size of the arena, which determines which player wins the game. Then take the cops-and-
robber game on the input n-vertex graph G, and encode it as an instance of the auxiliary
game on an arena of size n@(¥). Positions of the arena should reflect possible configurations
in the cops-and-robber game, i.e., locations of the cops and of the robber, whereas arcs
should reflect their possible actions.
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1. If S is a minimal (u, v)-separator, then the connected components of G—S that contain
u and v are full.

2. Use the fact that every minimal separator S has at least two full components.

3. Use induction on the number of vertices in G. If G has two nonadjacent vertices vy
and vg, then a minimal (v1, v2)-separator S is a clique. Use the induction assumption
to find a simplicial vertex in each of the full components.

4. Let v be a simplicial vertex of G. Use induction on the number of vertices n and
construct a tree decomposition of G from a tree decomposition of G — v.

5. (i) = (#). Let T = (T,{Xt}icv (1)) be a tree decomposition of width k. Let H be
the supergraph of G obtained from G by transforming every bag of 7 into a clique.
Then T = (T, {Xt}+cv (1)) is also a tree decomposition of H of width k, and thus the
maximum clique size of H does not exceed k+ 1. Show that H is chordal. (i¢) = (i44).
Here you need to construct a search strategy for the cops. This strategy imitates the
strategy of two cops on a tree. (i14) = (iv). We have discussed in the chapter that a
bramble of order more than k + 1 gives a strategy for the robber to avoid k + 1 cops.
(iv) = (i). This is the (harder) half of Theorem [7.15}

Proceed by induction, using Theorem

In one direction, argue that if G is an intersection graph of subtrees of a tree, then
every cycle in G of length at least 4 has a chord. In the other direction, use the fact that
every chordal graph G has a tree decomposition (T, {X¢},cv (1)) where every bag induces
a clique (Exercise [7.28)). Define H, = T[{t € V(T) : v € X;}] for every v € V(G). Argue
that the tree T with subtrees (Hy),cv (@) witnesses that G is an intersection graph of
subtrees of a tree.

Prove two inequalities, that vsn(G) < pw(G) and that pw(G) < vsn(G). In both
cases, you can make a direct construction that takes an ordering/path decomposition of
optimum width, and builds the second object of the same width. However, it can also be
convenient to use other characterizations of pathwidth, given in Theorem For instance,
you may give a strategy for searchers that exploits the existence of a path decomposition
of small width.

Let G be an n-vertex d-regular a-edge-expander and let X be a %—balanced separator
in G for a uniform weight function, given by Lemmal[7.19} Let D1, ..., D, be the connected
components of G — X. Since |D;| < n/2 for every 1 < ¢ < r, we have that at least a|D;|
edges connect D; and X. However, since G is d-regular, at most d|X| edges leave X.
Consequently,

.
> alDi| < d|x|,
=1

a(n - |X]) < d| x|,

[e%
d+ «

n <|X].

By Lemma , nH% — 1 is a lower bound for the treewidth of G.

7.35| Consider a clique on k2 — 1 vertices.
q

Show that planar graph H is a minor of a |V(H)|CM x |[V(H)|°() grid and then
use the Excluded Grid Theorem.

In Section we have already given a bramble of order ¢. Play with this example
to squeeze one more element of the bramble.
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[7.38] Use Lemma and Corollary

For an FPT algorithm parameterized by k 4 d, you may use either bidimensionality,
or a modification of the shifting technique where you remove d consecutive layers. For a
subexponential algorithm for a constant d, use bidimensionality.

To obtain any fixed-parameter tractable algorithm for parameterization by k, you
can use the shifting technique. Getting a subexponential one is more tricky.

The problem is not bidimensional, however, it can be reduced to a bidimensional prob-
lem. We order the vertices V(G) = {v1,v2,...,vn} nonincreasingly according to their
degrees. Show that, if (G, k, s) is a yes-instance, then there is a solution X such that for
some 7 it holds that X C {v1,v2,...,v,}, and, moreover, X is a dominating set in the
graph G[{v1,v2,...,v-}]. After guessing the number r, we can use bidimensionality.

Prove that a sufficiently large grid (in terms of k) does not admit a k-spanner, and
hence, intuitively, every yes-instance of the problem should have bounded treewidth. Also
finding a dynamic programming on a tree decomposition is nontrivial. Here, you may find
it useful to prove that it suffices to prove the spanner property only on single edges. A
caveat: the problem is not contraction-closed; it is possible to contract edges and increase
the parameter. While grid arguments will work at the end, we have to be careful here.

Consider a tree obtained from Exercise [7.10] equipped with a universal vertex.

First prove (say, by making use of the Planar Excluded Grid Theorem) that for every
planar graph G of treewidth ¢, the treewidth of its dual graph G* does not exceed ct for
some constant c. In fact, it is possible to show that tw(G) < tw(G*) 4+ 1 (see [361]) but
this is quite involved. Then deletion of edges in G corresponds to contraction of edges in
G*, and we can use Lemma |7.36

7.48| First, perform a color coding step: every vertex v € V(@) is colored with a color
¢(v) € V(H), and we look for a subgraph isomorphic to H, whose vertices have appropriate
colors. Second, compute a tree decomposition (T, { Xt }rev (7)) of H of width tw(H). Third,
perform the following dynamic programming: for every ¢t € V(T) and mapping ¢: X; —
V(G) such that c(¢(h)) = h for every h € Xy, compute whether there exists a (color-
preserving) homomorphism & from H[V4] to G that extends ¢. Here, color-preserving means
that c((h)) = h for every h, and Vi denotes the union of all bags of descendants of ¢ in
the tree T'.

m Take a nice tree decomposition (7', {Xt}teV(T)) of G of optimum width, and try to
turn it to a branch decomposition (T7,7n) of at most the same rankwidth. You will need to
get rid of leaf nodes and introduce nodes, so just collapse them. For forget nodes do the
following: whenever a vertex w is forgotten at node ¢, add a pendant leaf ¢’ to t and put
n(w) = t'. After further small adjustments, you will obtain a valid branch decomposition.
Prove that its rankwidth is at most the width of the original tree decomposition using the
following observation: removal of each e € E(T") splits the vertices of V(G) into sets Xe
and Ye, such that X, is the set of vertices forgotten in some subtree of the original tree
decomposition.

Intuitively, we sweep the forest H from left to right.

Let f be an embedding of GG into a rooted forest H of depth d. Order the trees of H
arbitrarily, and order the leaves of every tree of H in a natural way, obtaining a total
order on all the leaves of H. For every leaf h of H, let Y} be the set of all vertices on the
path from h to the root of the tree containing h. Argue that sets f~1(Y},) form a path
decomposition of G of width at most d — 1.

For the left inequality K - tw(G) < mmw(G), without loss of generality assume G
has no isolated vertices, and let (T',n) be a branch decomposition of V' (G) that yields the
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optimum pg-width. We will construct a tree decomposition (T, {Xt}scv (7)) of G (ie.,
using the same tree T') of width similar to the pg-width of (T, n). Pick any edge e € E(T),
and let Ge be the bipartite graph Gx_, where (Xe, Ye) is the partition of V(G) obtained
by removing edge e from T. Let W C V(G) be defined as follows: v € W, if and only if
for every maximum matching M in Ge, v is an endpoint of some edge in M. Show that
We is a vertex cover of G, and moreover its cardinality is at most twice the cardinality of
the maximum matching in Ge. For every t € V(T), let X be the union of sets We, where
e iterates over edges e incident to ¢ (there is always one or three such edges).

Now verify that (T, {X:}1ev (1)) is a tree decomposition of G. Property (T1) is obvious.
For property (T3), prove that the definition of the set W, is monotone in the following
sense: if v is a vertex of W, that belongs to, say, the left side of G, then v stays in We
even after moving any number of other vertices from the left side to the right side (this
corresponds to changing the graph G. when moving between two adjacent edges of T).
For property (T2), focus on one edge uwv € E(G) and look at the path in T between the
leaves corresponding to the vertices u and v. Let ey, ez, ..., e, be the edges of this path,
and assume they appear in this order. Argue, using (T3) and the fact that W, is a vertex
cover of Ge for each e € E(T), that there exists an index 1 < 49 < r such that u € W,
for every i < ig and v € We, for every i > ig. Then u,v are both contained in the bag at
the common endpoint of e;;, and e;;41.

For the right inequality mmw(G) < K> - tw(G), use the same construction as in Exer-

cise [.53}
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this chapter is due to Gu and Tamaki [239]. We refer you to the work of Gu and Tamaki for
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[134).
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graphs [144]. The subexponential algorithm for PArTiaL VERTEX COVER (Exercise is
from [203]. For Exercise parameterized algorithms for TREE SPANNER on planar, and
more generally on apex-minor-free graphs, are given in [I56]. The mentioned technique of
Catalan structures was used by Arora, Grign, Karger, Klein, and Woloszyn in [22] and by
Dorn, Penninx, Bodlaender, and Fomin in [147]. In Chapter [14] we discuss matching lower
bounds on running times of algorithms obtained using bidimensionality.

The shifting technique is one of the most common techniques for designing PTASes
on planar graphs. It dates back to the works of Baker [23] and Hochbaum and Maass
[265]. Grohe showed in [236] how the shifting technique can be extended to H-minor-free
graphs using tools from the theory of Graph Minors. Theorem[7.33]is due to Robertson and
Seymour and is from [398]. There is also a very similar notion of k-outerplanarity, see the
survey of Bodlaender [46]. Lemma[7.39]is due to Klein [294]; see also an extension of such a
decomposition by Demaine, Hajiaghayi, and Kawarabayashi to H-minor-free graphs [135].
For the complexity of SuBaraPH IsoMorPHISM under different parameterizations, we refer
you to the work of Marx and Pilipczuk [356]. Eppstein [I65] gave the first linear-time
algorithm for SuBcrAPH [soMORPHISM on planar graphs, with running time k) n, where
k is the size of the pattern graph. Dorn [143] improved this running time to 2°(¥)n. To
the best of our knowledge, the existence of a polynomial-time algorithm for MiNIMUM
BisecTioN on planar graphs remains open. For general graphs the problem is NP-hard,
but fixed-parameter tractable when parameterized by k [115].

The proof of the planarity criterion of Lemmacan be found in [421), Thm 3.8]. The
irrelevant vertex technique was first used in the work of Robertson and Seymour on the
VEeRTEX DisjoIiNT Parns problem [399] 402]. There are several constructive algorithms
for PLaNArR VERTEX DELETION, see e.g. |[285] [358]. The fastest known so far runs in
time k©(*)pn and is due to Jansen, Lokshtanov, and Saurabh [277]. Other examples of
applications of the irrelevant vertex technique can be found in [6], 116, 230, 238], [353].

Branchwidth of a graph was first introduced by Robertson and Seymour in [401]. This
work also contains the proof of the linear relation between treewidth and branchwidth, i.e.,
equation , and introduces the concept already in the wider setting of hypergraphs.
The polynomial-time algorithm for computing the branchwidth of a planar graph is due
to Seymour and Thomas [415].

Oum and Seymour [378] gave an FPT 3-approximation algorithm for computing the
f-width of any universe U, under the assumptions that f is submodular and provided to
the algorithm as an oracle. This work also discusses applications to matroid branchwidth.

Cliquewidth was first introduced by Courcelle and Olariu [I02]. Connections between
MSO; logic and graphs of bounded cliquewidth, resembling links between MSO2 and
treewidth, were discovered by Courcelle, Makowsky, and Rotics [I01]. Rankwidth was in-
troduced by Oum and Seymour [378] as a tool to approximate cliquewidth. Since rankwidth
and cliquewidth are bounded by functions of each other, the same tractability results for
model checking MSO; hold for rankwidth and for cliquewidth. From the general approx-
imation algorithm of Oum and Seymour [378] it follows that rankwidth admits an FPT
3-approximation algorithm. In the specific setting of rankwidth, the running time and the
approximation ratio were subsequently improved by Oum [377]. Hlinény and Oum [263]
gave an exact FPT algorithm deciding if the rankwidth of a graph is at most k; this
algorithm can also be used for matroid branchwidth.

Exercise originates in the PhD thesis of Vatshelle [426]. Lower bounds on dynamic-
programming algorithms for cliquewidth, and thus also for rankwidth, were investigated
by Fomin, Golovach, Lokshtanov, and Saurabh [192] [I91].

Further reading. The book of Diestel [I38] contains a nice overview of the role the treewidth
is playing in the Graph Minors project. We also recommend the following surveys of Reed
[3961, [395]. The proof of Courcelle’s theorem and its applications are discussed in the book of
Flum and Grohe [I89]. The book of Courcelle and Engelfriet [I00] is a thorough description
of monadic second-order logic on graphs. For a general introduction to mathematical logic,
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logic in computer science, and elements of model theory, we refer you to a wide range
of available textbooks, e.g., [30, 266]. An extensive overview of different algorithmic and
combinatorial aspects of treewidth as well as its relation to other graph parameters is given
in the survey of Bodlaender [46] and in the book of Kloks [297]. An overview of different
extensions of treewidth and rankwidth to directed graphs, matroids, hypergraphs, etc., is
provided in the survey of Hlinény, Oum, Seese, and Gottlob [264].
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Chapter 8
Finding cuts and separators

The notion of important cuts and the related com-
binatorial bounds give a useful tool for showing the
fized-parameter tractability of problems where a graph
has to be cut into certain parts. We discuss how this
technique can be used to show that EpDGE MuLTI-
way Cut and DIRECTED FEEDBACK VERTEX SET are
FPT. Random sampling of important separators is a
recent extension of this method, making it applicable
to a wider range of problems. We illustrate how this
extension works on a clustering problem called (p,q)-
PARTITION.

Problems related to cutting a graph into parts satisfying certain properties
or related to separating different parts of the graph from each other form a
classical area of graph theory and combinatorial optimization, with strong
motivation coming from applications. Many different versions of these prob-
lems have been studied in the literature: one may remove sets of edges or
vertices in a directed or undirected graph; the goal can be separating two
or more terminals from each other, cutting the graph into a certain num-
ber of parts, perhaps with constraints on the sizes of the parts, etc. Despite
some notable exceptions (e.g., minimum s — ¢ cut, minimum multiway cut in
planar graphs with fixed number of terminals), most of these problems are
NP-hard. In this chapter, we investigate the fixed-parameter tractability of
some of these problems parameterized by the size of the solution, that is, the
size of the cut that we remove from the graph (one could parameterize these
problems also by, for example, the number of terminals, while leaving the size
of the solution unbounded, but such parameterizations are not the focus of
this chapter). It turns out that small cuts have certain very interesting ex-
tremal combinatorial aspects that can be exploited in FPT algorithms. The
notion of important cuts formalizes this extremal property and gives a very
convenient tool for the treatment of these problems.

247
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There is another class of problems that are closely related to cut problems:
transversal problems, where we have to select edges/vertices to hit certain
objects in the graph. For example, the ODD CYCLE TRANSVERSAL problem
asks for a set of k vertices hitting every odd cycle in the graph. As we have
seen in Section [4:4] iterative compression can be used to transform Opp Cy-
CLE TRANSVERSAL into a series of minimum cut problems. The DIRECTED
FEEDBACK VERTEX SET problem asks for a set of k£ vertices hitting ev-
ery directed cycle in a graph. The fixed-parameter tractability of DIRECTED
FEEDBACK VERTEX SET was a longstanding open problem; its solution was
eventually reached by a combination of iterative compression and solving a
directed cut problem (essentially) using important cuts. There are other ex-
amples where the study of a transversal problem reveals that it can be turned
into an appropriate cut problem.

There is a particular difficulty that we face in the presentation of the basic
results for the cut problems. There are many variants: we can delete vertices
or edges, the graph can be directed or undirected, we may add weights (e.g.,
to forbid certain edges/vertices to be in the solution). While the basic theory
is very similar for these variants, they require different notation and slightly
different proofs. In this chapter, rather than presenting the most general form
of these results, we mostly focus on the undirected edge versions, as they are
the most intuitive and notationally cleanest. Then we go to the directed edge
versions to treat certain problems specific to directed graphs (e.g., DIRECTED
FEEDBACK VERTEX SET) and finish the chapter by briefly commenting on
the vertex variants of these results.

We assume basic familiarity with the concepts of cuts, flows, and algo-
rithms for finding minimum cuts. Nevertheless, Section [8.1] reviews some of
the finer points of minimum cuts in the form we need later. Section [8.2]intro-
duces the notion of important cuts and presents the bound on their number
and an algorithm to enumerate them. Then Section [8:3] uses important cuts
to solve problems such as EDGE MULTIWAY CUT.

Very recently, a new way of using important cuts was introduced in one of
the first FPT algorithms for MuLTICUT. The “random sampling of important
separators” technique allows us to restrict our attention to solutions that have
a certain structural property, which can make the search for the solution much
easier or can reduce it to some other problem. After the initial application for
multicut problems, several other results used this technique as an ingredient
of the solution. Unfortunately, most of these results are either on directed
graphs (where the application of the technique is more delicate) or use several
other nontrivial steps, making their presentation beyond the scope of this
textbook. Section [B:4] presents the technique on a clustering problem where
the task is to partition the graphs into classes of size at most p such that there
are at most ¢ edges leaving each class. This example is somewhat atypical
(as it is not directly a transversal problem), but we can use it to demonstrate
the random sampling technique in a self-contained way.
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Fig. 8.1: The set A({z1,z2,a,b,¢,d,e, f}) = {eyr, fy2} is a minimum
(X,Y)-cut (and hence minimal); the set A({x1,x2,a,b}) = {ac,bec,bd} is
a minimal (X,Y)-cut, but not minimum. The set A({x1,22,a,¢,d}) =
{z2b, ab,be, bd, ce,df} is an (X,Y)-cut, but not minimal

Section generalizes the notion of important cuts to directed graphs
and states the corresponding results without proofs. We point out that there
are significant differences in the directed setting: the way important cuts
were used to solve EDGE MULTIWAY CUT in undirected graphs does not
generalize to directed graphs. Nevertheless, we can solve a certain directed cut
problem called SKEW EDGE MULTICUT using important cuts. In Section [8:6]
a combination of the algorithm for SKEW EDGE MULTICUT and iterative
compression is used to show the fixed-parameter tractability of DIRECTED
FEEDBACK VERTEX SET and DIRECTED FEEDBACK ARC SET.

Section[8.7]discusses the version of the results for vertex-deletion problems.
We define the notions required for handling vertex-deletion problems and
state the most important results. We do not give any proofs in this section,
as they are mostly very similar to their edge-removal counterparts.

8.1 Minimum cuts

An (X,Y)-cut is a set S of edges that separates X and Y from each other,
that is, G\ S hasno X —Y path. We need to distinguish between two different
notions of minimality. An (X,Y)-cut S is a minimum (X,Y)-cut if there is
no (X,Y)-cut S’ with |S’| < |S|. An (X,Y)-cut is (inclusion-wise) minimal
if there is no (X,Y)-cut S’ with S’ C S (see Fig. [B.1). Observe that every
minimum cut is minimal, but not necessarily the other way around. We allow
parallel edges in this section: this is essentially the same as having arbitrary
integer weights on the edges.

It will be convenient to look at minimal (X, Y')-cuts from a different per-
spective, viewing them as edges on the boundary of a certain set of vertices.
If G is an undirected graph and R C V(G) is a set of vertices, then we denote
by Ag(R) the set of edges with exactly one endpoint in R, and we denote
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de(R) = |Ag(R)| (we omit the subscript G if it is clear from the context).
Let S be a minimal (X,Y)-cut in G and let R be the set of vertices reachable
from X in G\ S; clearly, we have X C R C V(G) \ Y. Then it is easy to see
that S is precisely A(R). Indeed, every such edge has to be in S (otherwise a
vertex of V(G) \ R would be reachable from X) and S cannot have an edge
with both endpoints in R or both endpoints in V(G)\ R, as omitting any such
edge would not change the fact that the set is an (X,Y)-cut, contradicting
minimality.

Proposition 8.1. If S is a minimal (X,Y)-cut in G, then S = Ag(R), where
R is the set of vertices reachable from X in G\ S.

Therefore, we may always characterize a minimal (X,Y)-cut S as A(R) for
some set X C R C V(G)\Y. Let us also note that A(R) is an (X,Y)-cut
for every such set R with X C R C V(G) \ Y, but not necessarily a minimal
(X,Y)-cut (see Fig. [B.1).

The well-known maximum flow and minimum cut duality implies that
the size of the minimum (X,Y)-cut is the same as the maximum number
of pairwise edge-disjoint X — Y paths. Classical maximum flow algorithms
can be used to find a minimum cut and a corresponding collection of edge-
disjoint X — Y paths of the same size. We do not review the history of these
algorithms and their running times here, as in our setting we usually want
to find a cut of size at most k, where k is assumed to be a small constant.
Therefore, the following fact is sufficient for our purposes: each round of the
algorithm of Ford and Fulkerson takes linear time, and k rounds are sufficient
to decide if there is an (X, Y')-cut of size at most k. We state this fact in the
following form.

Theorem 8.2. Given a graph G with n vertices and m edges, disjoint sets
X, Y CV(QG), and an integer k, there is an O(k(n+m))-time algorithm that
either

e correctly concludes that there is no (X,Y)-cut of size at most k, or
e returns a minimum (X,Y)-cut A(R) and a collection of |A(R)| pairwise
edge-disjoint X —Y paths.

Submodular set functions play an essential role in many areas of combina-
torial optimization, and they are especially important for problems involving
cuts and connectivity. Let f: 2V(%) — R be a set function assigning a real
number to each subset of vertices of a graph G. We say that f is submodular
if it satisfies the following inequality for every A, B C V(G):

f(A) + f(B) = f(ANB) + f(AU B). (8.1)

We will use the well-known fact that the function dg(X) = |Ag(X)| is sub-
modular.

Theorem 8.3. The function dg is submodular for every undirected graph G.
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Fig. 8.2: The different types of edges in the proof of Theorem

Proof. Let us classify each edge e according to the location of its endpoints
(see Fig. [8.2)) and calculate its contribution to the two sides of (8.1):

1. If both endpoints of e are in ANB, in A\ B, in B\ A4, orin V(G)\ (AUB),
then e contributes 0 to both sides.

2. If one endpoint of e is in A N B, and the other is either in A\ B or in
B\ A, then e contributes 1 to both sides.

3. If one endpoint of e is in V(G) \ (AU B), and the other is either in A\ B
or in B\ A, then e contributes 1 to both sides.

4. If e is between AN B and V(G) \ (AU B), then e contributes 2 to both
sides.

5. If e is between A\ B and B\ A, then e contributes 2 to the left-hand side
and 0 to the right-hand side.

As the contribution of each edge e to the left-hand side is at least as much
as its contribution to the right-hand side, inequality (8.1 follows. a

A reason why submodularity of dg is particularly relevant to cut problems
is that if A(A) and A(B) are both (X,Y)-cuts, then A(ANB) and A(AUB)
are both (X,Y)-cuts: indeed, AN B and A U B both contain X and are
disjoint from Y. Therefore, we can interpret Theorem as saying that if we
have two (X,Y)-cuts A(A), A(B) of a certain size, then two new (X, Y)-cuts
A(ANB), A(AU B) can be created and there is a bound on their total size.

The minimum (X,Y)-cut is not necessarily unique; in fact, a graph can
have a large number of minimum (X, Y')-cuts. Suppose, for example, that X =
{z}, Y = {y}, and k paths connect z and y, each of length n. Then selecting
one edge from each path gives a minimum (X,Y)-cut, hence there are n*
different minimum (X, Y')-cuts. However, as we show below, there is a unique
minimum (X,Y)-cut A(Rpyin) that is closest to X and a unique minimum
(X,Y)-cut A(Rpax) closest to Y, in the sense that the sets R,y and Rpax
are minimum and maximum possible, respectively (see Fig.[8.3|(a)). The proof
of this statement follows from an easy application of the submodularity of
de.
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Fig. 8.3: (a) A graph G with three edge-disjoint (X, Y )-paths and the (X,Y)-
cuts Rpin and Rp,ax of Theorem 8.4l (b) The corresponding residual directed
graph D defined in the proof of Theorem

Theorem 8.4. Let G be a graph and X, Y C V(G) two disjoint sets of ver-
tices. There are two minimum (X,Y)-cuts A(Rmin) and A(Rmax) such that
if A(R) is a minimum (X,Y)-cut, then Ryin € R C Riyax-

Proof. Consider the collection R of every set R C V(G) for which A(R) is a
minimum (X, Y)-cut. We show that there is a unique inclusion-wise minimal
set Rnin and a unique inclusion-wise maximal set Ry.. in R. Suppose for
contradiction that A(R;) and A(R) are minimum cuts for two inclusion-wise
minimal sets Ry # R» of R. By (8.1)), we have

dG<R1) + dg(Rg) > dg<R1 N Rg) + d(;<R1 U Rg).

If A is the minimum (X,Y)-cut size, then the left-hand side is exactly 2A,
hence the right-hand side is at most 2\. Observe that A(R; N R2) and A(R;U
Rs) are both (X, Y)-cuts. Taking into account that A is the minimum (X, Y)-
cut size, the right-hand side is also exactly 2\, with both terms being exactly
A. That is, A(R; N Ry) is a minimum (X, Y')-cut. Now R; # Ry implies that
Ry N Ry C Ry, Ro, contradicting the assumption that both R; and R, are
inclusion-wise minimal in R.
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The same argument gives a contradiction if R; # R, are inclusion-wise
maximal sets of the collection: then we observe that A(R; U Ry) is also a
minimum (X, Y)-cut. O

While the proof of Theorem [8.4]is not algorithmic, one can find, for example,
Ruin by repeatedly adding vertices to Y as long as this does not increase
the minimum cut size (Exercise [8.5). However, there is also a linear-time
algorithm for finding these sets.

Theorem 8.5. Let G be a graph with n vertices and m edges, and X,Y C
V(G) be two disjoint sets of vertices. Let k be the size of the minimum (X,Y)-
cut. The sets Ry, and Ry of Theorem can be found in time O(k(n +

m)).

Proof. Let us invoke the algorithm of Theorem B:2]and let Py, ..., Py be the
pairwise edge-disjoint X — Y paths returned by the algorithm. We build the
residual directed graph D as follows. If edge zy of G is not used by any of
the paths P;, then we introduce both (z,y) and (y,z) into D. If edge zy of
G is used by some P; in such a way that x is closer to X on path F;, then we
introduce the directed edgdﬂ (y,x) into D (see Fig. (b))

We show that Rmin is the set of vertices reachable from X in the residual
graph D and Ry, is the set of vertices from which Y is not reachable
in D.

Let Ag(R) be a minimum (X,Y)-cut of G. As Ag(R) is an (X,Y)-cut of
size k, each of the k paths P;, ..., Py uses exactly one edge of Ag(R). This
means that after P; leaves R, it never returns to R. Therefore, if P; uses an
edge ab € Ag(R) with a € R and b € R, then a is closer to X on P;. This
implies that (a,b) is not an edge of D. As this is true for every edge of the
cut Ag(R), we get that V(G)\ R is not reachable from X in Dj in particular,
Y is not reachable.

Let Rmin be the set of vertices reachable from X in D. We have shown
in the previous paragraph that Y is not reachable from X in D (that is,
X C Rpin C V(G)\Y), hence Ag(Rpin) is an (X,Y)-cut of G. If we can
show that this cut is a minimum (X, Y')-cut, then we are done: we have shown
that if Ag(R) is a minimum (X, Y")-cut, then V(G) \ R is not reachable from
X in D, implying that V(G) \ R C V(G) \ Rmin and hence Ruyin C R.

Every path P; uses at least one edge of the (X,Y)-cut Ag(Rmin). More-
over, P; cannot use more than one edge of the cut: if P; leaves R, and later
returns to Ry, on an edge ab with a &€ Ry, b € Ry and a closer to X
on P;, then (b,a) is an edge of D and it follows that a is also reachable from

I The reader might find introducing the edge (z,y) instead of (y,x) more natural and
indeed the rest of the proof would work just as well after appropriate changes. However,
here we follow the standard definition of residual graphs used in network flow algorithms.
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X in D, contradicting a ¢ Rumin- Therefore, Ag(Rmin) can have at most k
edges, implying that it is a minimum (X,Y)-cut. Therefore, R, satisfies
the requirements.

A symmetrical argument shows that the set Rya containing all vertices
from which Y is not reachable in D satisfies the requirements. a

8.2 Important cuts

Most of the results of this chapter are based on the following definition.

Definition 8.6 (Important cut). Let G be an undirected graph and let
X,Y C V(G) be two disjoint sets of vertices. Let S C E(G) be an (X,Y)-cut
and let R be the set of vertices reachable from X in G\ S. We say that
S is an important (X,Y)-cut if it is inclusion-wise minimal and there is no
(X,Y)-cut S” with |S’| < |S] such that R C R', where R’ is the set of vertices
reachable from X in G\ 5.

Note that the definition is not symmetrical: an important (X,Y)-cut is
not necessarily an important (Y, X)-cut.

An intuitive interpretation of Definition [8.6]is that we want to minimize
the size of the (X,Y)-cut and at the same time we want to maximize
the set of vertices that remain reachable from X after removing the
cut. The important (X,Y)-cuts are the (X,Y)-cuts that are “Pareto
efficient” with respect to these two objectives: increasing the set of ver-
tices reachable from X requires strictly increasing the size of the cut.

Let us point out that we do not want the number of vertices reachable
from X to be maximal, we just want that this set of vertices be inclusion-
wise mazimal (i.e., we have R C R’ and not |R| < |R/| in the definition).

The following proposition formalizes an immediate consequence of the def-
inition. This is the property of important (X,Y)-cuts that we use in the
algorithms.

Proposition 8.7. Let G be an undirected graph and X,Y C V(G) two dis-
joint sets of vertices. Let S be an (X,Y)-cut and let R be the set of vertices
reachable from X in G\'S. Then there is an important (X,Y)-cut 8" = A(R’)
(possibly, S = S) such that |S'| <|S| and RC R'.

Proof. By definition, every (X,Y)-cut has a subset that is an inclusion-wise
minimal (X,Y)-cut. Let S* C S be a minimal (X,Y)-cut and let R* D R be
the set of vertices reachable from X in G\ S*. If S* is an important (X,Y)-
cut, then we are done. Otherwise, there is an (X, Y)-cut S = A(R’) for some
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Y

Fig. 8.4: A graph where every minimal (X, Y")-cut is an important (X,Y)-cut

R D R* D Rand |9 < |S*| < |S]. If S is an important (X,Y)-cut, then
we are done. Otherwise, we can repeat the argument: each time we strictly
increase the set of vertices reachable from X and the size of the cut does
not increase. Eventually, the process has to stop and we obtain an important
(X,Y)-cut satisfying the required properties. O

To check whether a given (X,Y)-cut A(R) is important, one needs to
check whether there is another (X, Y')-cut of the same size “after” R, that is,
whether there is an (R Uwv,Y)-cut of size not larger for some v € V(G) \ R.
This can be done efficiently using Theorem [8:5]

Proposition 8.8. Given a graph G with n vertices and m edges, two disjoint
sets X, Y CV(G), and an (X,Y)-cut A(R) of size k, it can be tested in time
O(k(n+ m)) whether A(R) is an important cut.

Proof. Observe that A(R) is an important X — Y cut if and only if it is the
unique minimum (R, Y’) cut. Therefore, if we compute the minimum (R, Y)-
cut A(Rmax) using the algorithm of Theorem then A(R) is an important
(X,Y)-cut if and only if R = Rpax- O

Theorem [8.4] shows that A(Rmax) is the unique minimum (X, Y)-cut that
is an important (X,Y)-cut: we have R,y D R for every other minimum
(X,Y)-cut A(R). However, for sizes larger than the minimum cut size, there
can be a large number of incomparable (X, Y')-cuts of the same size. Consider
the example in Fig. Any (X,Y)-cut A(R) is an important (X,Y)-cut:
the only way to extend the set R is to move some vertex v; € V(G)\ (RUY)
into the set R, but then the cut size increases by 1. Therefore, the graph has
exactly () important (X,Y)-cuts of size n + .

The main result of the section is a bound on the number of important cuts
of size at most k that depends only on k£ and is independent of the size of the
graph. Moreover, we show that the important separators can be efficiently
enumerated. We need first the following simple observations, whose proofs
are given as Exercise

Proposition 8.9. Let G be a graph, X, Y C V(G) be two disjoint sets of
vertices, and S = A(R) be an important (X,Y)-cut.
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1. For every e € S, the set S\ {e} is an important (X,Y)-cut in G \ e.
2.If S is an (X', Y)-cut for some X' D X, then S is an important (X', Y)-
cut.

The first key observation in bounding the number of important (X,Y)-
cuts is that every important (X,Y')-cut is after the set Ry,ax of Theorem [8.4

Lemma 8.10. If A(R) is an important (X,Y)-cut, then Ryax C R.
Proof. Let us apply the submodular inequality (8.1) on Ryax and R:
dG’(Rmax) + dG(R) Z dG(Rmax N R) + dG(Rmax U R)

Let A be the minimum (X, Y')-cut size. The first term dg(Rmax) on the left-
hand side is exactly A (as Ag(Rmax) is @ minimum (X, Y)-cut). Furthermore,
Ag(Rmax N R) is an (X,Y)-cut, hence we have that the first term on the
right-hand side is at least A. It follows then that the second term of the
left-hand side is at least the second term on the right-hand side, that is,
de(R) > dg(R U Rmax). If Rmax € R, then Ryax U R is a proper superset
of R. However, then the (X,Y)-cut Ag(Rmax U R) of size at most dg(R)
contradicts the assumption that Ag(R) is an important (X, Y)-cut. Thus we
have proved that Ry.x C R. O

We are now ready to present the bound on the number of important cuts.

Theorem 8.11. Let X, Y C V(G) be two disjoint sets of vertices in graph G
and let k > 0 be an integer. There are at most 4% important (X,Y)-cuts of
size at most k.

Proof. We prove that there are at most 22~ important (X,Y)-cuts of size

at most k, where A is the size of the smallest (X, Y')-cut. Clearly, this implies
the upper bound 4* claimed in the theorem. The statement is proved by
induction on 2k — A. If A > k, then there is no (X,Y)-cut of size k, and
therefore the statement holds if 2k — X\ < 0. Also, if A = 0 and k£ > 0, then
there is a unique important (X, Y)-cut of size at most k: the empty set.

The proof is by branching on an edge xy leaving Ry,x: an important
(X,Y)-cut either contains zy or not. In both cases, we can recurse on
an instance where the measure 2k — X is strictly smaller.

Let A(R) be an important (X,Y)-cut and let A(Rpax) be the minimum
(X,Y)-cut defined by Theorem By Lemma [8.10, we have Ryax C R. As
we have assumed A > 0, there is at least one edge zy with x € Ryax € R
and y € Rpax. Then vertex y is either in R or not. If y ¢ R, then zy is
an edge of the cut A(R) and then S\ {zy} is an important (X,Y)-cut in
G' = G\ xy of size at most k' := k — 1 (Prop. [8.9(/1)). Removing an edge
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can decrease the size of the minimum (X,Y)-cut size by at most 1, hence
the size X of the minimum (X,Y)-cut in G’ is at least A — 1. Therefore,
2k’ — X' < 2k — X and the induction hypothesis implies that there are at most
92K =A" < 92k=A=1 important (X,Y)-cuts of size k' in G, and hence at most
that many important (X,Y')-cuts of size k in G that contain the edge zy.

Let us count now the important (X, Y')-cuts not containing the edge xy. As
Riax € R, the fact that 2y is not in the cut implies that even Ry.xU{y} C R
is true. Let X’ = Rpyax U {y}; it follows that A(R) is an (X’,Y)-cut and in
fact an important (X', Y)-cut by Prop. [8.9[2). There is no (X', Y)-cut A(R')
of size A: such a cut would be an (X,Y)-cut with Rpax C Rmax U{y} C R/,
contradicting the definition of Rumax. Thus the minimum size A’ of an (X', Y)-
cut is greater than . It follows by the induction assumption that the number
of important (X', Y)-cuts of size at most k is at most 92k—=A" < 92k=A—1 which
is a bound on the number of important (X,Y)-cuts of size k in G that do
not, contain zy.

Adding the bounds in the two cases, we get the required bound 22*=*. 0O

The main use of the bound in Theorem is for algorithms based on
branching: as the number of important (X, Y)-cuts is bounded by a function
of k, we can afford to branch on selecting one of them (see for example
Theorem. The following refined bound is very helpful for a tighter bound
on the size of the search tree for such algorithms. Its proof is essentially the
same as the proof of Theorem [8.11] with an appropriate induction statement

(see Exercise [8.9).

Lemma 8.12. Let G be an undirected graph and let X, Y C V(G) be two
disjoint sets of vertices. If S is the set of all important (X,Y)-cuts, then

SgesdE <1

Observe that Lemma [8.12] implies Theorem [8:I1} the contribution of each
important (X,Y)-cut to the sum is at least 4%, hence the fact that the sum
is at most 1 implies that there can be at most 4% such cuts.

So far, Theorem 8.11]and Lemma B.12]are purely combinatorial statements
bounding the number of important cuts. However, an algorithm for enumer-
ating all of the important cuts follows from the proof of Theorem [8:11] First,
we can compute Ry .y using the algorithm of Theorem [8.5] Pick an arbitrary
edge 2y € A(Rmax)- Then we branch on whether edge xy is in the important
cut or not, and recursively find all possible important cuts for both cases. The
search tree of the algorithm has size at most 4* and the work to be done in
each node is O(k(n+m)). Therefore, the total running time of the branching
algorithm is O(4* - k(n 4+ m)) and it returns at most 4* cuts.

However, there is an unfortunate technical detail with the algorithm de-
scribed above. The algorithm enumerates a superset of all important cuts:
by our analysis, every important cut is found, but there is no guarantee that
all the constructed cuts are important (see Exercise . We present three
different ways of handling this issue. The most obvious solution is to perform
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a filtering phase where we use Proposition [8.§|to check for each returned cut
whether it is important. This filtering phase takes time O(4% - k(n + m)).

Theorem 8.13. Let X, Y C V(G) be two disjoint sets of vertices in a graph
G with n vertices and m edges, and let k > 0 be an integer. The set of all
important (X,Y)-cuts of size at most k can be enumerated in time O(4% - k -
(n+m)).

When using the refined bound of Lemma[8:12]to bound the running time of a
branching algorithm, we need that the time spent in each node of the search
tree be proportional to the number of directions into which we branch. This is
unfortunately not true if we use Theorem [8.13]to enumerate all the important
cuts: the 4% factor appears in the time bound, even if the number of actual
important cuts returned is much less than 4*. To obtain an algorithm that
does not suffer from this problem, let S; be the set of all (X,Y")-cuts found
before the filtering. Observe that if the algorithm considers only branches
where k > X\ (otherwise there is no (X,Y)-cut of size at most k), then every
leaf node has A = 0 and hence produces a cut, which means that the recursion
tree has |S},| leaves. Furthermore, the height of the recursion tree is at most
k, thus the recursion tree has O(k|S;|) nodes. The work to be done in each
node is O(k(n+m)). Therefore, we obtain the following bound on the running
time.

Theorem 8.14. Let X, Y C V(G) be two disjoint sets of vertices in graph G
with n vertices and m edges, let k > 0 be an integer. One can enumerate a
superset Sj, of every important (X,Y)-cut of size at most k in time O(|S}| -
k% (n+m)). Moreover, the set S, satisfies ZSeS,; 4-181 < 1.

Theorem [8.14] gives a more refined bound on the running time than Theo-
rem It may appear somewhat confusing, however, that the algorithm
of Theorem returns cuts that are not (X,Y)-cuts. What Theorem
really says is that we have good bounds both on the running time and on the
number of cuts returned even if we consider these cuts and do not restrict
the output to the important (X, Y)-cuts. One may prefer a cleaner statement
about the existence of an algorithm that returns only important (X, Y')-cuts
and the running time depends linearly on the size of the output. It is possi-
ble to obtain such an algorithm, but it requires an additional combinatorial
argument. We need to ensure that the size of the recursion tree is O(k|Sk|),
where Sy, is the set of all important (X, Y')-cuts of size at most k. We achieve
this by checking before each recursion step whether at least one important
(X,Y)-cut of size at most k will be returned; if not, then there is no need
to perform the recursion. This way, we ensure that each leaf of the recursion
tree returns an important (X, Y )-cut, hence the size of the recursion tree can
be bounded by O(k|Sk|). The check before the recursion is made possible by
the following lemma.

Lemma 8.15. Let X, Y C V(G) be two disjoint sets of vertices in a graph
G with n vertices and m edges, let k > 0 be an integer, and let Z C A(X)
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be a set of edges. It can be checked in time O(k(n 4+ m)) whether there is an
important (X,Y)-cut S of size at most k with Z C S.

Proof. Let G' = G\ Z, let C = A/ (R}, ,) be the minimum (X, Y)-cut of G’
given by Theorem We claim that G has an important (X,Y)-cut of size
at most k containing Z if and only Z U C is such a cut. Suppose that there is
a D C E(G') such that Z U D is an important (X,Y)-cut of size at most k.
As ZU D is a minimal (X,Y)-cut, we can write it as Ag(Rp) for some set
Rp 2 X. Each edge of Z C Ag(X) has an endpoint not in X; let P contain
all these endpoints. Observe that Z C Ag(Rp) implies that Rp is disjoint
from P.

Clearly, Z U C is an (X,Y)-cut in G, thus if it is not important, then
Proposition implies that there is an important (X,Y)-cut S = A(Rg)
with |S] < |ZUC] and R}, C Rs. If Z C S, then S\ Z = Ag/(Rs) is an
(X,Y)-cut in G’ with |S'\ Z| < |C|. By the definition of R} .., this is only
possible if |[S'\ Z| = |C| and Rs = Ry, which would imply S = Z U C.
Therefore, at least one edge of Z is not in S, which implies that Rg contains
at least one vertex of P.

Consider now the submodular inequality on Rgs and Rp.
dg(Rs) +da(Rp) > da(Rs N Rp) +da(Rs U Rp)

Observe that Ag(RsURp) is an (X,Y)-cut and RsURp is a proper superset
of Rp (as Rp is disjoint from P and Rg intersects P). Thus the fact that ZUD
is an important (X,Y')-cut implies dg(Rs U Rp) > dg(Rp). It follows that
de(RsNRp) < dg(Rs) < |ZUC| has to hold. Note that Z C Ag(RsNRp)
as X € RsNRp and Rp (and hence RgN Rp) is disjoint from P. Therefore,
Ag(RsNRp) can be written as ZUC™ for some C* C E(G’) disjoint from Z.
Now |ZUC*| = dg(Rs N Rp) < |ZUC| implies |C*| < |C|. This contradicts
the assumption that C' is a minimum (X,Y)-cut in G'. O

Equipped with Lemma 815 one can modify the branching algorithm in a
way that it enumerates only important (X,Y)-cuts. (Exercise asks for
working out the details of this algorithm.)

Theorem 8.16. Let X, Y C V(QG) be two disjoint sets of vertices in a graph
G with n vertices and m edges, and let k > 0 be an integer. The set Sk
of all important (X,Y)-cuts of size at most k can be enumerated in time

O(|Sk| - k% - (n +m)).

The reader might wonder how tight the bound 4* in Theorem is. The
example in Fig. already showed that the number of important cuts of size
at most k can be exponential in k. We can show that the bound 4* is tight
up to polynomial factors; in particular, the base of the exponent has to be 4.
Consider a rooted complete binary tree T' with n > k levels; let X contain
only the root and Y contain all the leaves (see Fig. . Then every rooted
full binary subtree T with k leaves gives rise to an important (X,Y)-cut of
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Fig. 8.5: A graph with ©(4*/k3/2) important (X,Y")-cuts of size k: every full
binary subtree with k leaves gives rise to an important (X,Y")-cut of size k.
The figure shows a subtree with six leaves and the corresponding (X, Y')-cut
of size 6 (red edges)

size k. Indeed, the cut A(R) obtained by removing the edges incident to the
leaves of 7" is an important (X, Y)-cut, as moving more vertices to R would
clearly increase the cut size. It is well known that the number of full subtrees
with exactly k leaves of a rooted complete binary tree is precisely the Catalan
number Cy, = (1/k) (%7 72) = (4% /k3/2).

As an application of the bound on the number of important cuts, we
can prove the following surprisingly simple, but still nontrivial combinatorial
result: only a bounded number of edges incident to Y are relevant to (X,Y)-
cuts of size at most k.

Lemma 8.17. Let G be an undirected graph and let X, Y C V(G) be two
disjoint sets of vertices. The union of all minimal (X,Y)-cuts of size at most
k contains at most k - 4% edges incident to Y.

Proof. Let F contain an edge e if it is incident to a vertex of Y and it
appears in an (X,Y)-important cut of size at most k. By Theorem we
have |F| < 4% . k. To finish the proof of the lemma, we show that if an edge
e incident to Y appears in some minimal (X,Y)-cut A(R) of size at most
k, then e € F'. Proposition implies that there is an important (X,Y)-cut
A(R') of size at most k with R C R'. Edge e has an endpoint x € R and an
endpoint y ¢ R. As RNY = (), the endpoint y of e has to be in Y. Now we
havex €e RC R andy € Y C V(G)\ R/, hence e is an edge of A(R') as well,
implying e € F. a
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8.3 EDGE MuLTIwAY CUT

Let G be a graph and T' C V(G) be a set of terminals. An edge multiway
cut is a set S of edges such that every component of G \ S contains at most
one vertex of T'. Given a graph G, terminals 7', and an integer k, the EDGE
MurTiwAY CUT problem asks if a multiway cut of size at most k exists. If
|T| = 2, that is, T = {¢1,t2}, then EDGE MULTIWAY CUT is the problem of
finding a (t1,t2)-cut of size at most k, hence it is polynomial-time solvable.
However, the problem becomes NP-hard already for |T'| = 3 terminals [124].

In this section, we show that EDGE MuLTiwAy Cut is FPT parameterized
by k. The following observation connects EDGE MULTIWAY CUT and the
concept of important cuts:

Lemma 8.18 (Pushing lemma for EDGE MuLTiway CUT). Let t € T be
an arbitrary terminal in an undirected graph G. If G has a multiway cut S,
then it also has a multiway cut S* with |S*| < |S| such that S* contains an
important (t,T \ t)-cut.

Proof. If t is separated from T'\ ¢ in G, then the statement trivially holds, as
the empty set is an important (¢, 7'\t)-cut. Otherwise, let R be the component
of G\ S containing t. As S is a multiway cut, R is disjoint from T \ ¢ and
hence Sgp = A(R) is a (¢, T\ t)-cut contained in S. By Proposition there
is an important (¢,7 \ t)-cut S" = A(R’) with R C R’ and |S’| < |Sg| (see
Fig. 8.6). We claim that S* = (S\ Sg) U S’, which has size at most |S|, is
also a multiway cut, proving the statement of the lemma.

Replacing the (¢, T\ t)-cut Sg in the solution with an important (¢, 7'\t)-
cut S’ cannot break the solution: as it is closer to T\ ¢, it can be even
more helpful in separating the terminals in 7"\ ¢ from each other.

Clearly, there is no path between ¢ and any other terminal of T \ ¢ in
G\ S*, as ' C S*isa (¢t,T \ t)-cut. Suppose therefore that there is a path
P between two distinct terminals t1,¢2 € T\ ¢ in G\ S*. If P goes through
a vertex of R C R/, then it goes through at least one edge of the (¢t,7\ t)
cut S’ = A(R'), which is a subset of S*, a contradiction. Therefore, we may
assume that P is disjoint from R. Then P does not go through any edge of
Sr = A(R) and therefore the fact that P is disjoint from S* implies that it
is disjoint from S as well, contradicting the assumption that S is a multiway
cut. O

Using this observation, we can solve the problem by branching on the
choice of an important cut and including it into the solution:

Theorem 8.19. EDGE MuLTIWAY CUT on a graph with n vertices and m
edges can be solved in time O(4% - k3 - (n +m)).
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Fig. 8.6: Replacing A(R) with A(R’) in the proof of Lemma does not
break the solution: if a path connecting ¢1,t2 € T\ ¢ enters R, then it has to
use an edge of A(R') as well

Proof. We solve the problem by a recursive branching algorithm. If all the
terminals are separated from each other, then we are done. Otherwise, let
t € T be a terminal not separated from the rest of the terminals. Let us use
the algorithm of Theorem to construct the set Sy consisting of every
important (¢, T \ t)-cut of size at most k. By Lemma[8.18] there is a solution
that contains one of these cuts. Therefore, we branch on the choice of one of
these cuts: for every important cut S’ € S, we recursively solve the EDGE
Murtiway CuUT instance (G\ S’, T,k —|S’|). If one of these branches returns
a solution S, then clearly S U S’ is a multiway cut of size at most & in G.
The correctness of the algorithm is clear from Lemma [8.18 We claim that
the search tree explored by the algorithm has at most 4* leaves. We prove
this by induction on k, thus let us assume that the statement is true for
every value less than k. This means that we know that the recursive call
(G\ S, T,k —|S'|) explores a search tree with at most 4¥~5'l leaves. Note
that the value of k£ — |S’| is always nonnegative and the claim is trivial for
k = 0. Using Lemma [8.12] we can bound the number of leaves of the search

tree by
Z 4R=18"1 < 4k Z 47151 < 4*,
58y, S'€8y

Therefore, the total time spent at the leaves can be bounded by O(4¥k(n +
m)). As the height of the search tree is at most k, it has O(k4¥) nodes. If
we use the algorithm of Theorem [B.16] to enumerate Sy, then the time spent
at an internal node with ¢ children is O(tk?(n + m)). Summing the number
of children for every internal node is exactly the number of edges, and hence
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can be bounded by O(k4F). Therefore, the total work in the internal nodes

is O(48 k3 (n +m)). 0
A slight generalization of EDGE MULTIWAY CUT is EDGE MULTIWAY CUT
FOR SETS, where the input is a graph G, pairwise disjoint sets 11, ..., T},

and an integer k; the task is to find a set S of edges that pairwise separates
these sets from each other, that is, there is no T; — T; path in G \ S for any
i # j. EDGE MULTIWAY CUT FOR SETS can be reduced to EDGE MULTIWAY
Curt simply by consolidating each set into a single vertex.

Theorem 8.20. EDGE MULTIWAY CUT FOR SETS on a graph with n vertices
and m edges can be solved in time O(4% - k3 - (n +m)).

Proof. We construct a graph G’ as follows. The vertex set of G’ is (V(G) \

P T;)UT, where T = {v1,...,v,}. For every edge zy € E(G), there is a
corresponding edge in G’: if endpoint x or y is in T}, then it is replaced by
v;. It is easy to see that there is a one-to-one correspondence between the
solutions of the EDGE MULTIWAY CUT FOR SETS instance (G, (11, ...,T}p), k)

and the EDGE MuLTiwaYy CUT instance (G', T, k). O

Another well-studied generalization of EDGE MULTIWAY CUT can be ob-
tained if, instead of requiring that all the terminals be separated from each
other, we require that a specified set of pairs of terminals be separated from
each other. The input in the EDGE MULTICUT problem is a graph G, pairs
(s1,t1), ..., (se,te), and an integer k; the task is to find a set S of at most
k edges such that G\ S has no s; — t; path for any 1 < i < £. If we have
a bounded number of pairs of terminals, EDGE MULTICUT can be reduced
to EDGE MuLriway CUT FOR SETS: we can guess how the components of
G\ S for the solution S partition the 2¢ vertices s;, t; (1 < < ¢) and solve
the resulting EDGE MULTIWAY CUT FOR SETS instance. The 2¢ terminals
can be partitioned in at most (2¢)%¢ different ways, thus we can reduce EDGE
MULTICUT into at most that many instances of EDGE MULTIWAY CUT FOR
SeTS. This shows that EDGE MuvrricuT is FPT with combined parameters k
and ¢. We may also observe that the removal of at most k edges can partition
a component of G into at most (k+ 1) components, hence we need to consider
at most (k + 1)% partitions.

Theorem 8.21. EDGE MULTICUT on a graph with n vertices and m edges
can be solved in time O((20)% - 4% - k3(n +m)) or in time O((k + 1)2¢ - 4% .
k3(n+m)).

It is a more challenging question whether the problem is FPT parameter-
ized by k (the size of the solution) only. The proof of this requires several non-
trivial technical steps and is beyond the scope of this chapter. We remark that
one of the papers proving the fixed-parameter tractability of EDGE MULTI-
CUT was the paper introducing the random sampling of important separators
technique [357].

Theorem 8.22 ([59, [357]). EDGE MULTICUT on an n-vertex graph can be
solved in time 200*) . nOQ)
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8.4 (p, q)-clustering

The typical goal in clustering problems is to group a set of objects such
that, roughly speaking, similar objects appear together in the same group.
There are many different ways of defining the input and the objective of
clustering problems: depending on how similarity of objects is interpreted,
what constraints we have on the number and size of the clusters, and how
the quality of the clustering is measured, we can define very different problems
of this form. Often a clustering problem is defined in terms of a (weighted)
graph: the objects are the vertices and the presence of a (weighted) edge
indicates similarity of the two objects and the absence of an edge indicates
that the two objects are not considered to be similar.

In this section, we present an algorithm for a particular clustering prob-
lem on graphs that is motivated by partitioning circuits into several field
programmable gate arrays (FPGAs). We say that a set C C V(G) is a (p,q)-
cluster if |C| < p and d(C) < ¢. A (p,q)-partition of G is a partition of
V(G) into (p, ¢)-clusters. Given a graph G and integers p and ¢, the (p, q)-
PARTITION problem asks if G has a (p, ¢)-partition. The main result of this
section is showing that (p,q)-PARTITION is FPT parameterized by ¢. The
proof is based on the technique of random sampling of important separators
and serves as a self-contained demonstration of this technique.

e An uncrossing argument shows that the trivial necessary condition
that every vertex is in a (p, ¢)-cluster is also a sufficient condition.

e Checking whether v is in a (p, ¢)-cluster is trivial in n®@ time, but
an FPT algorithm parameterized by ¢ is more challenging.

e The crucial observation is that a minimal (p, ¢)-cluster containing v
is surrounded by important cuts.

e A randomized reduction allows us to reduce finding a (p, q)-cluster
containing v to a knapsack-like problem.

e The derandomization of the reduction uses splitters, introduced in
Section

A necessary condition for the existence of (p, ¢q)-partition is that for every
vertex v € V(G) there exists a (p, ¢)-cluster that contains v. Very surprisingly,
it turns out that this trivial necessary condition is actually sufficient for the
existence of a (p, ¢)-partition. The proof (Lemma needs a variant of
submodularity: we say that a set function f : 2V(¢) — R is posimodular if it
satisfies the following inequality for every A, B C V(G):

f(A) + f(B) = f(A\ B) + f(B\ A). (8.2)

This inequality is very similar to the submodular inequality (8.1) and the
proof that dg has this property is a case analysis similar to the proof of
Theorem The only difference is that edges of type 4 contribute 2 to the
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left-hand side and 0 to the right-hand side, while edges of type 5 contribute
2 to both sides.

Theorem 8.23. The function dg is posimodular for every undirected graph
G.

More generally, it can be shown that every symmetric submodular function
(that is, when f(X) = f(V(G)\ X) for every X C V(G)) is posimodular (see
Exercise .

We are now ready to prove that every vertex being in a (p, ¢)-cluster is a
sufficient condition for the existence of a (p, ¢)-partition.

Lemma 8.24. Let G be an undirected graph and let p,q > 0 be two integers.
If every v € V(Q) is contained in some (p,q)-cluster, then G has a (p,q)-
partition. Furthermore, given a set of (p,q)-clusters C1, ..., C,, whose union
is V(G), a (p,q)-partition can be found in polynomial time.

Proof. Let us counsider a collection C1, ..., C, of (p, q)-clusters whose union is
V(Q). If the sets are pairwise disjoint, then they form a partition of V' (G) and
we are done. If C; C Cj, then the union remains V(G) even after throwing
away C;. Thus we can assume that no set is contained in another.

The posimodularity of the function d¢ allows us to uncross two clusters
C; and Cj if they intersect.

Suppose that C; and C; intersect. Now either d(C;) > d(C;\C;) or d(C;) >
d(C; \ C;) must be true: it is not possible that both d(C;) < d(C; \ C;) and
d(C;) < d(C;\C;) hold, as this would violate the posimodularity of d. Suppose
that d(C;) > d(C; \ C;). Now the set C; \ C; is also a (p, ¢)-cluster: we have
d(C;\ C;) < d(C;) < g by assumption and |C; \ C;| < |C;| < p. Thus we can
replace C; by C; \ C; in the collection: it will remain true that the union of
the clusters is V(G). Similarly, if d(C;) > d(C; \ C;), then we can replace C;
by C; \ Cj.

Repeating these steps (throwing away subsets and resolving intersections),
we eventually arrive at a pairwise-disjoint collection of (p, ¢)-clusters. Each
step decreases the number of cluster pairs (C;, C;) that have nonempty in-
tersection. Therefore, this process terminates after a polynomial number of
steps. O

The proof of Lemma [8.24] might suggest that we can obtain a partition
by simply taking, for every vertex v, a (p, g)-cluster C,, that is inclusion-wise
minimal with respect to containing v. However, such clusters can still cross.
For example, consider a graph on vertices a, b, ¢, d where every pair of vertices
except a and d are adjacent. Suppose that p = 3, ¢ = 2. Then {a,b,c} is a
minimal cluster containing b (as more than two edges are going out of each
of {b}, {b,c}, and {a,b}) and {b,c,d} is a minimal cluster containing ¢. Thus
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unless we choose the minimal clusters more carefully in a coordinated way,
they are not guaranteed to form a partition. In other words, there are two
symmetric solutions ({a,b,c},{d}) and ({a}, {b,c,d}) for the problem, and
the clustering algorithm has to break this symmetry somehow.

In light of Lemma [8.24] it is sufficient to find a (p, ¢)-cluster C, for each
vertex v € V(G). If there is a vertex v for which there is no such cluster
Cy, then obviously there is no (p, g)-partition; if we have such a C,, for every
vertex v, then Lemma gives us a (p,q)-partition in polynomial time.
Therefore, in the rest of the section, we are studying the (p,q)-CLUSTER
problem, where, given a graph G, a vertex v € V(G), and integers p and g,
it has to be decided if there is a (p, g)-cluster containing v.

For fixed ¢, the (p,q)-CLUSTER problem can be solved by brute force:
enumerate every set I’ of at most ¢ edges and check if the component of
G \ F containing v is a (p, ¢)-cluster. If C,, is a (p, g)-cluster containing v,
then we find it when F' = A(C,) is considered by the enumeration procedure.

Theorem 8.25. (p, q)-CLUSTER can be solved in time n®9 on an n-vertex
graph.

The main result of the section is showing that it is possible to solve (p, q)-
CLUSTER (and hence (p, ¢)-PARTITION) more efficiently: in fact, it is fixed-
parameter tractable parameterized by ¢. By Lemma[8:24] all we need to show
is that (p, ¢)-CLUSTER is fixed-parameter tractable parameterized by q. We
introduce a somewhat technical variant of (p,q)-CLUSTER, the SATELLITE
PROBLEM, which is polynomial-time solvable. Then we show how to solve
(p, q)-CLUSTER using an algorithm for the SATELLITE PROBLEM.

The input of the SATELLITE PROBLEM is a graph G, integers p, ¢, a vertex
v € V(G), and a partition (Vp, Vi,...,V,) of V(G) such that v € V and there
is no edge between V; and V; for any 1 < ¢ < j < r. The task is to find a (p, ¢)-
cluster C satisfying Vo C C such that for every 1 <1 < r, either CNV; =0
or V; C C (see Fig.[8.7).

Since the sets {V;} form a partition of V(G), we have r < n. For every
Vi (1 < i <), we have to decide whether to include or exclude it from the
solution cluster C. If we exclude V; from C, then d(C) increases by d(V;),
the number of edges between Vj and V;. If we include V; into C, then |C|
increases by |C|.

To solve SATELLITE PROBLEM, we need to solve the knapsack-like prob-
lem of including sufficiently many V;’s such that d(C) < ¢, but not
including too many to ensure |C| < p.

Lemma 8.26. The SATELLITE PROBLEM can be solved in polynomial time.

Proof. For a subset S of {1,...,r}, we define C(S) = Vp U J,cq Vi. Notice
that d(C(S)) = d(Vo)—>_,cq d(V;). Hence, we can reformulate the SATELLITE
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Fig. 8.7: Instance of SATELLITE PROBLEM with a solution C. Excluding V3
and V, from C decreased the size of C by the grey area, but increased d(C')
by the red edges

PROBLEM as finding a subset S of {1,...,r} such that ), d(Vi) > d(Vp) —q
and ), ¢ |Vi| < p—|Vo|. Thus, we can associate with every i an item with
value d(V;) and weight |V;|. The objective is to find a set of items with total
value at least Viarget := d(Vp) — ¢ and total weight at most Wiax :=p — |Vo.
This problem is known as KNAPSACK and can be solved in polynomial time by
a classical dynamic-programming algorithm in time polynomial in the number
r of items and the maximum weight Wy, (assuming that the weights are
positive integers). In our case, both r and wy,,x are polynomial in the size
of the input, hence a polynomial-time algorithm for SATELLITE PROBLEM
follows.

For completeness, we briefly sketch how the dynamic-programming algo-
rithm works. For 0 < i < 7 and 0 < j < Wpax, we define T[i, j] to be the
maximum value of a set S C {1,...,4} that has total weight at most j. By
definition, T'[0, j] = 0 for every j. Assuming that we have computed T[i—1, j]
for every j, we can then compute T[i, ] for every j using the following re-
currence relation:

Tli, j) = max{T[i — 1,5, T[i = 1,5 — [Vi[] + d(Vi)} .

That is, the optimal set S either does not include item 4 (in which case it is
also an optimal set for T'[i — 1, j]), or includes item ¢ (in which case removing
item ¢ decreases the value by d(V;), decreases the weight bound by |V;|, and
what remains should be optimal for T[i — 1,57 — |V;|]). After computing every
value T'i,j], we can check whether v is in a suitable cluster by checking
whether T'[r, Wmax| > Vtarget holds. |

What remains to be shown is how to reduce (p, ¢)-CLUSTER to the SATEL-
LITE PROBLEM. We first present a randomized version of this reduction as it
is cleaner and conceptually simpler. Then we discuss how splitters, introduced
in Section [5.6] can be used to derandomize the reduction.
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At this point it is highly unclear how to reduce (p, q)-CLUSTER to the
SATELLITE PROBLEM. In the latter problem, the parts V; that may or
may not be included into a cluster are very well behaved (disjoint and
nonadjacent), whereas in (p,¢)-CLUSTER we do not have any insight
yet into the structure of connected components of G\ C, where C'is the
cluster we are looking for.

First, the crucial observation is that we may assume that each con-
nected component of G\ C is surrounded by an important cut, leading
to only an FPT number of candidates for such components. Second, we
randomly filter out a fraction of the candidates, so that we can obtain
a SATELLITE PROBLEM instance from the remaining ones.

The following definition connects the notion of important cuts with our
problem.

Definition 8.27 (Important set). We say that a set X C V(G), v ¢ X is
important if

Ld(X) <q,
2. G[X] is connected,
3. thereisno Y D X, v € Y such that d(Y) < d(X) and G[Y] is connected.

It is easy to see that X is an important set if and only if A(X) is an important
(u, v)-cut of size at most ¢ for every u € X. Thus we can use Theorem to
enumerate every important set, and Lemma [8.12] to give an upper bound on
the number of important sets. The following lemma establishes the connection
between important sets and finding (p, ¢)-clusters: we can assume that the
components of G \ C for the solution C' are important sets.

Lemma 8.28. Let C be an inclusion-wise minimal (p, q)-cluster containing
v. Then every component of G\ C is an important set.

Proof. Let X be a component of G\ C. It is clear that X satisfies the first
two properties of Definition (note that A(X) C A(C) implies d(X) <
d(C) < q). Thus let us suppose that there is a Y D X, v € Y such that
d(Y) < d(X) and G[Y] is connected. Let C’ := C \ Y. Note that C’ is a
proper subset of C: every neighbor of X is in C, thus a connected superset
of X has to contain at least one vertex of C. It is easy to see that C’ is a
(p, q)-cluster: we have A(C') C (A(C)\ A(X))UA(Y) and therefore d(C") <
d(C) —d(X) 4+ d(Y) < d(C) < q and |C’| < |C| < p. This contradicts the
minimality of C. a

We are now ready to present the randomized version of the reduction.

Lemma 8.29. Given an n-vertex graph G, vertex v € V(G), and integers p
and q, we can construct in time 2°(0 . n®M) an instance I of the SATELLITE
PROBLEM such that
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e If some (p,q)-cluster contains v, then I is a yes-instance with probability
2-9(9),

e If there is no (p, q)-cluster containing v, then I is a no-instance.

Proof. We may assume that G is connected: if there is a (p, ¢)-cluster con-
taining v, then there is such cluster contained in the connected component
of v.

For every u € V(G), u # v, let us use the algorithm of Theorem to
enumerate every important (u,v)-cut of size at most ¢. For every such cut
S, let us put the component K of G\ S containing u into the collection X.
Note that the same component K can be obtained for more than one vertex
u, but we put only one copy into X.

Let X’ be a subset of X, where each member K of X is chosen with
probability 4~4¥) independently at random. Let Z be the union of the sets in
X', let V1, ..., V; be the connected components of G[Z], and let Vo = V(G)\
Z. It is clear that Vg, Vi, ..., V.. describe an instance I of the SATELLITE
PROBLEM, and a solution for I gives a (p, ¢)-cluster containing v. Thus we
only need to show that if there is a (p, ¢)-cluster C containing v, then I is a
yes-instance with probability 2~(@).

We show that the reduction works if the union Z of the selected im-
portant sets satisfies two constraints: it has to cover every component
of G\ C and it has to be disjoint from the vertices on the boundary

of C. The probability of the event that these constraints are satisfied is
92-0(q)

Let C be an inclusion-wise minimal (p, ¢)-cluster containing v. We define
9(C) to be the border of C: the set of vertices in C' with a neighbor in V/(G)\C,
or in other words, the vertices of C' incident to A(C). Let K1, ..., K; be the
components of G \ C. Note that every edge of A(C) enters some K;, thus
S d(K;) =d(C) < q. By Lemma every K; is an important set, and
hence it is in X'. Consider the following two events:

(E1) Every component K; of G\ C is in X’ (and hence K; C 7).
(E2) Zno(C) = 0.

The probability that (E1) holds is []'_, 4~9K) = 4= Ximi d(K) > 4-a,
Event (E2) holds if for every w € 9(C), no set K € X with w € K is selected
into X’. It follows directly from the definition of important cuts that for
every K € X with w € K, the set A(K) is an important (w,v)-cut. Thus
by Lemma [8.12) 3" xcy ,ex 47%5) < 1. To bound the probability of the
event Z N O(C) = 0, we have to bound the probability that no important set
intersecting 0(C) is selected:
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In the first inequality, we use the fact that every term is less than 1 and
every term on the right-hand side appears at least once on the left-hand side.
In the second inequality, we use the fact that 1+ 2 > exp(z/(1+2z)) for every
x > —1. In the third inequality, we use the fact that d(K) > 1 follows from
the assumption that the graph G is connected, hence 1 —4-4%) > 3/4 holds.

Events (E1) and (E2) are independent: (E1) is a statement about the
selection of a specific subcollection A C X of at most ¢ sets that are disjoint
from 9(C), while (E2) is a statement about not selecting any member of a
specific subcollection B C X of at most |0(C)| - 47 sets intersecting S. Thus,
with probability at least 2=°(@ both (E1) and (E2) hold.

Suppose that both (E1) and (E2) hold. We show that the corresponding
instance I of the SATELLITE PROBLEM is a yes-instance. In this case, every
component K; of G\ C is a component V; of G[Z]: K; C Z by (E1) and every
neighbor of K; is outside Z. Thus C' is a solution of I, as it can be obtained
as the union of V; and some components of G[Z]. O

Lemma gives a randomized reduction from (p,q)-CLUSTER to the
SATELLITE PROBLEM, which is polynomial-time solvable (Lemma .
Therefore, there is a randomized algorithm for (p, ¢)-CLUSTER with running
time 290 . nOM and success probability peorrect = 2~ (9. By repeating
the algorithm [1/peorrect| = 20(@) times, the probability of a false answer
decreases to (1 — peorrect )| /Peorreet] < 1/e (using 1 — x < e~ %).

Corollary 8.30. There is a 2°@.n°W) time randomized algorithm for (p, q)-
CLUSTER with constant error probability.

To derandomize the proof of Lemma|8.29|and to obtain a deterministic ver-
sion of Corollary we use splitters, which were introduced in Section [5.6
We present here only a simpler version of the derandomization, where the
dependence on ¢ in the running time is of the form 20(@*) | 1t is possible to
improve this dependence to 2°(?) matching the bound in Corollary [8.30
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However, the details are somewhat technical and hence we omit here the
description of this improvement.

Recall that Theorem provided us with an (n, k, k?)-splitter of size
O(kSlog klogn): a family F of functions from [n] to [k?] such that for any
subset X C [n] with | X| = k, one of the functions f in the family is injective
on X.

The main idea of the derandomization is to replace the random selection
of the subfamily X’ by a deterministic selection based on the functions
in a splitter.

Theorem 8.31. (p, q)-CLUSTER can be solved in time 20(a*) . nO)

Proof. In the algorithm of Lemma [8:29] a random subset of a universe X’ of
size s = |X'| < 4%-n is selected. If the (p, ¢)-CLUSTER problem has a solution
C, then there is a collection A C X of at most a := ¢ sets and a collection
B C X of at most b := ¢-49 sets such that if every set in A is selected and no
set in B is selected, then (E1) and (E2) hold. Instead of selecting a random
subset, we try every function f in an (s,a + b, (a + b)?)-splitter F (obtained
through Theorem , and every subset F' C [(a + b)?] of size a (there are
((atb)2) = 20(‘12)) such sets F'). For a particular choice of f and F, we select
those sets S € X into X’ for which f(S) € F. The size of the splitter F
is 2009 . logn and the number of possibilities for F is 20(a") Therefore, we
construct 20(@°) . log n instances of the SATELLITE PROBLEM.

By the definition of the splitter, there will be a function f that is injective
on AU B, and there is a subset F' such that f(S) € F for every set S in A and
f(S) & F for every set S in B. For such an f and F, the selection will ensure
that (E1) and (E2) hold. This means that the constructed instance of the
SATELLITE PROBLEM corresponding to f and F' has a solution as well. Thus
solving every constructed instance of the SATELLITE PROBLEM in polynomial
time gives a 20(4*) . pO) algorithm for (p, ¢)-CLUSTER. O

One can obtain a more efficient derandomization by a slight change of the
construction in the proof of Theorem [8.31] and a more careful analysis. This
gives a deterministic algorithm with 29(2) dependence on g.

Theorem 8.32 ([324]). (p, q¢)-CLUSTER can be solved in time 200 . O,

Finally, we have shown in Lemma that there is a reduction from (p, q)-
PARTITION to (p, q)-CLUSTER, hence fixed-parameter tractability follows for
(p, q)-PARTITION as well.

Theorem 8.33. (p, q)-PARTITION can be solved in time 2°(0) . n@(),
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8.5 Directed graphs

Problems on directed graphs are notoriously more difficult than problems
on undirected graphs. This phenomenon has been observed equally often in
the area of polynomial-time algorithms, approximability, and fixed-parameter
tractability. Let us see if the techniques based on important cuts survive the
generalization to directed graphs.

Given a directed graph G and two disjoint sets of vertices X, Y C V(G),
a directed (X,Y)-cut is a subset S of edges such that G \ S has no directed
path from X to Y (but it may have directed paths from Y to X). We denote
by AL(R) the set of edges starting in R and ending in V(G) \ R. As for
undirected graphs, every minimal (X,Y)-cut S can be expressed as AE(R)
for some X C R C V(G) \ R. Important cuts can be defined analogously for
directed graphs.

Definition 8.34 (Important cut in directed graphs). Let G be a di-
rected graph and let XY C V(G) be two disjoint sets of vertices. Let
S C E(G) be an (X,Y)-cut, and let R be the set of vertices reachable from
X in G\ S. We say that S is an important (X,Y)-cut if it is minimal and
there is no (X,Y)-cut S’ with |S’| < |S| such that R C R/, where R’ is the
set of vertices reachable from X in G'\ 5.

Proposition [8.7] generalizes to directed graphs in a straightforward way.

Proposition 8.35. Let G be a directed graph and X,Y C V(G) be two dis-
joint sets of vertices. Let S be an (X,Y)-cut and let R be the set of ver-
tices reachable from X in G\ S. Then there is an important (X,Y)-cut
S" = AT(R') (possibly, 8" = S) such that |S’| <|S| and R C R'.

We state without proof that the bound of 4% of Theorem holds also
for directed graphs.

Theorem 8.36. Let X, Y C V(G) be two sets of vertices in a directed graph
G with n vertices and m edges, let k > 0 be an integer, and let Sy be the set
of all (X,Y)-important cuts of size at most k. Then |Si| < 4% and Sy can be
constructed in time O(|Sy| - k*(n +m)).

Also, an analogue of the bound of Lemma [8:12] holds for directed important
cuts.

Lemma 8.37. Let G be a directed graph and let X, Y C V(G) be two dis-
joint sets of wvertices. If S is the set of all important (X,Y)-cuts, then

SesdF <1

Given a directed graph G, a set T C V(G) of terminals, and an integer k,
the DIRECTED EDGE MULTIWAY CuUT problem asks for a set S of at most
k edges such that G\ S has no directed t; — to path for any two distinct
ti,to € T. Theorem @ gives us some hope that we would be able to use
the techniques of Section for undirected EDGE MULTIWAY CUT also for



8.5 Directed graphs 273

t1 [2)

b

Fig. 8.8: The unique important (¢1,t2)-cut is the edge (b, t2), the unique im-
portant (to, ¢1)-cut is the edge (b, t1), but the unique minimum edge multiway
cut is the edge (a,b)

directed graphs. However, the pushing lemma (Lemma is not true on
directed graphs, even for |T| = 2; see Fig. for a simple counterexample
where the unique minimum multiway cut does not use any important cut be-
tween the two terminals. The particular point where the proof of Lemma [8.18
breaks down in the directed setting is where a T\ ¢ — ¢ path appears af-
ter replacing S with S*. This means that a straightforward generalization of
Theorem [B.19) to directed graphs is not possible. Nevertheless, using different
arguments (in particular, using the random sampling of important separators
technique), it is possible to show that DIRECTED EDGE MuLTIWAY CUT is
FPT parameterized by the size k of the solution.

Theorem 8.38 ([91), 89]). DIRECTED EDGE MurTiwaYy CUT on an n-
vertex graph can be solved in time 20(k*) . ,0(1)

The input of the DIRECTED EDGE MULTICUT problem is a directed graph
G, a set of pairs (s1,t1), ..., (S¢,te), and an integer k, the task is to find a
set S of at most k edges such that G\ S has no directed s; — t; path for any
1 <4 < k. This problem is more general than DIRECTED EDGE MULTIWAY
CuUT: the requirement that no terminal be reachable from any other terminal
in G\ S can be expressed by a set of |T|(|T| — 1) pairs (s;, ;).

In contrast to the undirected version (Theorem [.22), DIRECTED EDGE
Murricut is W[1]-hard parameterized by &, even on directed acyclic graphs.
But the problem is interesting even for small values of ¢. The argument of
Theorem (essentially, guessing how the components of G \ S partition
the terminals) no longer works, as the relation of the terminals in G\ S can
be more complicated in a directed graph than just a simple partition into
connected components. The case £ = 2 can be reduced to DIRECTED EDGE
MuLTIwAY CUT in a simple way (see Exercise [8.14), thus Theorem [8.3§|
implies that DIRECTED EDGE MULTICUT for ¢ = 2 is FPT parameterized by
k. The case of a fixed ¢ > 3 and the case of jointly parameterizing by £ and k
are open for general directed graphs. However, there is a positive answer for
directed acyclic graphs.

Theorem 8.39 ([309]). DIRECTED EDGE MULTIWAY CUT on directed acyclic
graphs is FPT parameterized by £ and k.
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There is a variant of directed multicut where the pushing argument does
work. SKEW EDGE MULTICUT has the same input as DIRECTED EDGE MUL-
TICUT, but now the task is to find a set S of at most & edges such that G\ S
has no directed s; — ¢; path for any ¢ > j. While this problem is somewhat
unnatural, it will be an important ingredient in the algorithm for DIRECTED
FEEDBACK VERTEX SET in Section [R.6

Lemma 8.40 (Pushing lemma for SkeEw EDGE MuLTIiCcUT). Let
(G, ((s1,t1),---,(se,te)), k) be an instance of SKEW EDGE MULTICUT. If the
instance has a solution S, then it has a solution S* with |S*| < |S| that
contains an important (s¢, {t1,...,te})-cut.

Proof. Let T = {t1,...,t¢} and let R be the set of vertices reachable from
sgin G\ S. As S is a solution, R is disjoint from 7" and hence AT (R) is an
(s¢, T)-cut. If Sp = A*(R) is an important (s, T)-cut, then we are done: S
contains every edge of AT (R). Otherwise, Propositionimplies that there
is an important (X,Y)-cut S’ = AT(R') such that R C R’ and |S’| < |Sg|-
We claim that S* = (S\Sg)US’, which has size at most |S], is also a solution,
proving the statement of the lemma.

The reason why replacing Sr with the important (s, T')-cut S’ does not
break the solution is because every path that we need to cut in SKEW
EDGE MULTICUT ends in T' = {t1,...,t¢}.

Clearly, there is no path between s, and any terminal in 7" in G \ S*, as
S’ C S* is an (s, T)-cut. Suppose therefore that there is an s; — t; path P
for some 7 > j in G\ S*. If P goes through a vertex of R C R’, then it goes
through at least one edge of the (s;, T)-cut S’ = AT (R’), which is a subset
of §*, a contradiction. Therefore, we may assume that P is disjoint from R.
Then P does not go through any edge of Sp = A(R) and therefore the fact
that it is disjoint from S* implies that it is disjoint from S, contradicting the
assumption that .S is a solution. a

Equipped with Lemma B.37 and Lemma [8.40] a branching algori